6160 research outputs found

    Community News

    Get PDF

    Up-scaling a Sol-Gel Process for the Production of a Multi-Component Xerogel Powder

    Get PDF
    A sol-gel process for the synthesis of a multi-component oxide material from the system SiO2-ZrO2-Al2O3underwent optimization and up-scaling. Initially, on a laboratory scale, components including precursors, catalysts, and additives were methodically evaluated to ensure a safe and efficient transition to larger volumes. Subsequently, the equipment for the whole setup of the sol-gel process was strategically selected. Leveraging insights from these optimizations, the process was successfully scaled-up to pilot-scale operation, conducting hydrolysis, condensation reactions, gelation, aging, and drying within a single, integrated conical dryer system for an 80 L batch. A visual test and FTIR spectroscopy were applied for process control and monitoring


    Get PDF

    Modeling-based Approach Towards Quality by Design for a Telescoped Process

    Get PDF
    A telescoped, two-step synthesis was investigated by applying Quality by Design principles. A kinetic model consisting of 12 individual reactions was successfully established to describe the synthesis and side reactions. The resulting model predicts the effects of changes in process parameters on total yield and quality. Contour plots were created by varying process parameters and displaying the model predicted process response. The areas in which the process response fulfils predetermined quality requirements are called design spaces. New ranges for process parameters were explored within these design spaces. New conditions were found that increased the robustness of the process and allowed for a considerable reduction of the used amounts of a reagent. Further optimizations, based on the newly generated knowledge, are expected. Improvements can either be direct process improvements or enhancements to control strategies. The developed strategies can also be applied to other processes, enhancing upcoming and preexisting research and development efforts

    A New Chapter for Swiss Materials Chemistry: Materials Chemistry Highlights

    No full text
    The division dedicated to materials chemistry at the Swiss Chemical Society (SCS) has been recently restructured by merging the Division for Polymers, Colloids, and Interfaces (DCPI) with the Materials Chemistry Network (MatChem). This column provides more insights into the process while outlining the vision and activities of the newly established SCS Division of Materials Chemistry (DMC)

    Rotational-state-selected Carbon Astrochemistry

    Get PDF
    The addition of individual quanta of rotational excitation to a molecule has been shown to markedly change its reactivity by significantly modifying the intermolecular interactions. So far, it has only been possible to observe these rotational effects in a very limited number of systems due to lack of rotational selectivity in chemical reaction experiments. The recent development of rotationally controlled molecular beams now makes such investigations possible for a wide range of systems. This is particularly crucial in order to understand the chemistry occurring in the interstellar medium, such as exploring the formation of carbon-based astrochemical molecules and the emergence of molecular complexity in interstellar space from the reaction of small atomic and molecular fragments

    From Enigma to Revelation: Unravelling Biological Functions of Ubiquitous Small Ribozymes

    Get PDF
    RNA, widely recognized as an information-carrier molecule, is capable of catalyzing essential biological processes through ribozymes. Despite their ubiquity, specific functions in a biological context and phenotypes based on the ribozymes' activity are often unknown. Here, we present the discovery of a subgroup of minimal HDV-like ribozymes, which reside 3' to viral tRNAs and appear to cleave the 3'-trailers of viral premature tRNA transcripts. This proposed tRNA-processing function is unprecedented for any ribozymes, thus, we designate this subgroup as theta ribozymes. Most theta ribozymes were identified in Caudoviricetes bacteriophages, the main constituent (>90%) of the mammalian gut virome. Intriguingly, our findings further suggest the involvement of theta ribozymes in the transition of certain bacteriophages between distinct genetic codes, thus possibly contributing to the phage lysis trigger. Our discovery expands the limited repertoire of biological functions attributed to HDV-like ribozymes and provides insights into the fascinating world of RNA catalysis

    Solving Intractable Chemical Problems by Tensor Decomposition

    Get PDF
    Many complex chemical problems encoded in terms of physics-based models become computationally intractable for traditional numerical approaches due to their unfavorable scaling with increasing molecular size. Tensor decomposition techniques can overcome such challenges by decomposing unattainably large numerical representations of chemical problems into smaller, tractable ones. In the first two decades of this century, algorithms based on such tensor factorizations have become state-of-the-art methods in various branches of computational chemistry, ranging from molecular quantum dynamics to electronic structure theory and machine learning. Here, we consider the role that tensor decomposition schemes have played in expanding the scope of computational chemistry. We relate some of the most prominent methods to their common underlying tensor network formalisms, providing a unified perspective on leading tensor-based approaches in chemistry and materials science

    Towards Greener and More Cost-efficient Biosynthesis of Pharmaceuticals and Fragrance Molecules

    Get PDF
    Enzymes are natural catalysts which are gaining momentum in chemical synthesis due to their exquisiteselectivity and their biodegradability. However, the cost-efficiency and the sustainability of the overall biocatalytic process must be enhanced to unlock completely the potential of enzymes for industrial applications. To reach this goal, enzyme immobilization and the integration into continuous flow reactors have been the cornerstone of our research. We showed key examples of the advantages of those tools for the biosynthesis of antivirals, anticancer drugs, and valuable fragrance molecules. By combining new strategies to immobilize biocatalysts, innovative bioengineering approaches, and process development, the performance of the reactions could be boosted up to 100-fold


    full texts


    metadata records
    Updated in last 30 days.
    Access Repository Dashboard
    Do you manage Open Research Online? Become a CORE Member to access insider analytics, issue reports and manage access to outputs from your repository in the CORE Repository Dashboard! 👇