27 research outputs found

    Particle flux associated with stochastic processes

    Get PDF
    Particle flux associated with stochastic processe

    Time-Dependent Stochastic Particle Acceleration in Astrophysical Plasmas: Exact Solutions Including Momentum-Dependent Escape

    Full text link
    Stochastic acceleration of charged particles due to interactions with magnetohydrodynamic (MHD) plasma waves is the dominant process leading to the formation of the high-energy electron and ion distributions in a variety of astrophysical systems. Collisions with the waves influence both the energization and the spatial transport of the particles, and therefore it is important to treat these two aspects of the problem in a self-consistent manner. We solve the representative Fokker-Planck equation to obtain a new, closed-form solution for the time-dependent Green's function describing the acceleration and escape of relativistic ions interacting with Alfven or fast-mode waves characterized by momentum diffusion coefficient D(p)∝pqD(p)\propto p^q and mean particle escape timescale tesc(p)∝pq−2t_esc(p) \propto p^{q-2}, where pp is the particle momentum and qq is the power-law index of the MHD wave spectrum. In particular, we obtain solutions for the momentum distribution of the ions in the plasma and also for the momentum distribution of the escaping particles, which may form an energetic outflow. The general features of the solutions are illustrated via examples based on either a Kolmogorov or Kraichnan wave spectrum. The new expressions complement the results obtained by Park and Petrosian, who presented exact solutions for the hard-sphere scattering case (q=2q=2) in addition to other scenarios in which the escape timescale has a power-law dependence on the momentum. Our results have direct relevance for models of high-energy radiation and cosmic-ray production in astrophysical environments such as γ\gamma-ray bursts, active galaxies, and magnetized coronae around black holes.Comment: Accepted for publication in Ap

    High-energy pulses and phase-resolved spectra by inverse Compton emission in the pulsar striped wind - Application to Geminga

    Full text link
    (abridged) Although discovered 40 years ago, the emission mechanism responsible for the observed pulsar radiation remains unclear. However, the high-energy pulsed emission is usually explained in the framework of either the polar cap or the outer gap model. The purpose of this work is to study the pulsed component, that is the light-curves as well as the spectra of the high-energy emission, above 10 MeV, emanating from the striped wind model. Gamma rays are produced by scattering off the soft cosmic microwave background photons on the ultrarelativistic leptons flowing in the current sheets. We compute the time-dependent inverse Compton emissivity of the wind, in the Thomson regime, by performing three-dimensional numerical integration in space over the whole striped wind. The phase-dependent spectral variability is then calculated as well as the change in pulse shape when going from the lowest to the highest energies. Several light curves and spectra of inverse Compton radiation with phase resolved dependence are presented. We apply our model to the well-known gamma-ray pulsar Geminga. We are able to fit the EGRET spectra between 10 MeV and 10 GeV as well as the light curve above 100 MeV with good accuracy.Comment: Accepted by A&

    Pulsar acceleration by asymmetric emission of sterile neutrinos

    Get PDF
    A convincing explanation for the observed pulsar large peculiar velocities is still missing. We argue that any viable particle physics solution would most likely involve the resonant production of a non-interacting neutrino Îœs\nu_s of mass mÎœs∌20m_{\nu_s}\sim 20--50 keV. We propose a model where anisotropic magnetic field configurations strongly bias the resonant spin flavour precession of tau antineutrinos into Îœs\nu_s. For internal magnetic fields B_{int} \gsim 10^{15} G a Μˉτ\bar\nu_\tau-Îœs\nu_s transition magnetic moment of the order of 10−1210^{-12} Bohr magnetons is required. The asymmetric emission of Îœs\nu_s from the core can produce sizeable natal kicks and account for recoil velocities of several hundred kilometers per second.Comment: 14 pages, AASTEX, 2 figures (uses epsfig). Minor typos corrected. Added acknowledgments to the funding institutes BID and Colciencia

    Influence of Rotation on Pulsar Radiation Characteristics

    Get PDF
    We present a relativistic model for pulsar radio emission by including the effect of rotation on coherent curvature radiation by bunches. We find that rotation broadens the width of leading component compared to the width of trailing component. We estimate the component widths in the average pulse profiles of about 24 pulsars, and find that 19 of them have a broader leading component. We explain this difference in the component widths by using the nested cone emission geometry. We estimate the effect of pulsar spin on the Stokes parameters, and find that the inclination between the rotation and magnetic axes can introduce an asymmetry in the circular polarization of the conal components. We analyze the single pulse polarization data of PSR B0329+54 at 606 MHz, and find that in its conal components, one sense of circular polarization dominates in the leading component while the other sense dominates in the trailing component. Our simulation shows that changing the sign of the impact parameter changes the sense of circular polarization as well as the swing of polarization angle.Comment: 20 pages, 4 Postscript figures, uses aastex.cls. Accepted for Publication in ApJ 200

    Occupational Therapy’s Role in Addressing College Campus Well-Being

    Get PDF
    The purpose of this study is to (1) explore occupational therapy’s role in mental health and (2) investigate the effects of Cranial Electrotherapy Stimulation and mindfulness in reducing symptoms of depression, stress or insomnia among college students. This study utilized a pre/posttest design with participants randomized into 2 groups: CES alone (Group A) and mindfulness meditation and CES (Group B). A purposeful sample of college students were recruited, all with a previous diagnosis or self-report of stress/anxiety. This study measured sleep, anxiety, trait mindfulness, and daily function using the Hamilton Anxiety Rating Scale, Freiburg Mindfulness Inventory, Functional Status Questionnaire, and Pittsburgh Sleep Quality Index. Measurements were taken at baseline, weeks 5, 8, and 12. Following intake, students began the 5-week treatment protocol. In week 1, participants completed CES or CES/meditations for 7 days. In weeks 2-5, participants completed 4-5 times/week, 20-40mins each, depending on tolerated dosage. Repeated-measures ANOVA revealed a significant effect of time over 8 weeks for HAM-A [F(1,22) = 19.42, p \u3c 0.05], FMI [F(2,21) = 10.41, p \u3c 0.05], PSQI [F(2,22) = 19.01, p \u3c 0.05], and FSQ Social Role Function [F(2,21) = 5.00, p \u3c 0.05]. There were no significant differences between groups for all four assessments, nor a significant effect of time for the Physical/Psychological FSQ categories. Results reveal that time is the biggest factor in reducing anxiety, and increasing mindfulness, sleep, and daily function, despite differences in groups. This demonstrates that CES and mindfulness might be effective treatment methods for mental health in OT

    Evidence for alignment of the rotation and velocity vectors in pulsars

    Get PDF
    We present strong observational evidence for a relationship between the direction of a pulsar's motion and its rotation axis. We show carefully calibrated polarization data for 25 pulsars, 20 of which display linearly polarized emission from the pulse longitude at closest approach to the magnetic pole. Such data allow determination of the position angle of the linear polarisation which in turn reflects the position angle of the rotation axis. Of these 20 pulsars, 10 show an offset between the velocity vector and the polarisation position angle which is either less than 10\degr or more than 80\degr, a fraction which is very unlikely by random chance. We believe that the bimodal nature of the distribution arises from the presence of orthogonal polarisation modes in the pulsar radio emission. In some cases this orthogonal ambiguity is resolved by observations at other wavelengths so that we conclude that the velocity vector and the rotation axis are aligned at birth. Strengthening the case is the fact that 4 of the 5 pulsars with ages less than 3 Myr show this relationship, including the Vela pulsar. We discuss the implications of these findings in the context of the Spruit & Phinney (1998)\nocite{sp98} model of pulsar birth-kicks. We point out that, contrary to claims in the literature, observations of double neutron star systems do not rule out aligned kick models and describe a possible observational test involving the double pulsar system.Comment: MNRAS, In Pres

    Current Flow and Pair Creation at Low Altitude in Rotation Powered Pulsars' Force-Free Magnetospheres: Space-Charge Limited Flow

    Get PDF
    (shortened) We report the results of an investigation of particle acceleration and electron-positron plasma generation at low altitude in the polar magnetic flux tubes of Rotation Powered Pulsars, when the stellar surface is free to emit whatever charges and currents are demanded by the force-free magnetosphere. We observe novel behavior. a) When the current density is less than the Goldreich-Julian (GJ) value (0<j/j_{GJ}<1), space charge limited acceleration of the current carrying beam is mild, with the full GJ charge density being comprised of the charge density of the beam, co-existing with a cloud of electrically trapped particles with the same sign of charge as the beam. The voltage drops are on the order of mc^2/e, and pair creation is absent. b) When the current density exceeds the GJ value (j/j_{GJ}>1), the system develops high voltage drops, causing emission of gamma rays and intense bursts of pair creation. The bursts exhibit limit cycle behavior, with characteristic time scales somewhat longer than the relativistic fly-by time over distances comparable to the polar cap diameter (microseconds). c) In return current regions, where j/j_{GJ}<0, the system develops similar bursts of pair creation. In cases b) and c), the intermittently generated pairs allow the system to simultaneously carry the magnetospherically prescribed currents and adjust the charge density and average electric field to force-free conditions. We also elucidate the conditions for pair creating beam flow to be steady, finding that such steady flows can occupy only a small fraction of the current density parameter space of the force-free magnetospheric model. The generic polar flow dynamics and pair creation is strongly time dependent. The model has an essential difference from almost all previous quantitative studies, in that we sought the accelerating voltage as a function of the applied current.Comment: 35 pages, 29 figures. Accepted for publication in MNRAS. Added new appendix, several minor changes in the tex

    On the escape of cosmic rays from radio galaxy cocoons

    Get PDF
    (Abridged) A model for the escape of CR particles from radio galaxy cocoons is presented here. It is assumed that the radio cocoon is poorly magnetically connected to the environment. An extreme case of this kind is an insulating boundary layer of magnetic fields, which can efficiently suppress particle escape. More likely, magnetic field lines are less organised and allow the transport of CR particles from the source interior to the surface region. For such a scenario two transport regimes are analysed: diffusion of particles along inter-phase magnetic flux tubes (leaving the cocoon) and cross field transport of particles in flux tubes touching the cocoon surface. The cross field diffusion is likely the dominate escape path, unless a significant fraction of the surface is magnetically connected to the environment. Major cluster merger should strongly enhance the particle escape by two complementary mechanisms. i) The merger shock waves shred radio cocoons into filamentary structures, allowing the CRs to easily reach the radio cocoon boundary due to the changed morphology. ii) Also efficient particle losses can be expected for radio cocoons not compressed in shock waves. There, for a short period after the sudden injection of large scale turbulence, the (anomalous) cross field diffusion can be enhanced by several orders of magnitude. This lasts until the turbulent energy cascade has reached the microscopic scales, which determine the value of the microscopic diffusion coefficients.Comment: A&A in press, 12 pages, 5 figures, minor language improvement

    On the Nature of Pulsar Radio Emission

    Get PDF
    A theory of pulsar radio emission generation, in which the observed waves are produced directly by maser-type plasma instabilities operating at the anomalous cyclotron-Cherenkov resonance ω−k∄v∄+ωB/Îłres=0\omega- k_{\parallel} v_{\parallel} + \omega_B/ \gamma_{res}=0 and the Cherenkov-drift resonance ω−k∄v∄−k⊄ud=0\omega- k_{\parallel} v_{\parallel} - k_{\perp} u_d =0, is capable of explaining the main observational characteristics of pulsar radio emission. The instabilities are due to the interaction of the fast particles from the primary beam and the tail of the distribution with the normal modes of a strongly magnetized one-dimensional electron-positron plasma. The waves emitted at these resonances are vacuum-like, electromagnetic waves that may leave the magnetosphere directly. In this model, the cyclotron-Cherenkov instability is responsible for core emission pattern and the Cherenkov-drift instability produces conal emission. The conditions for the development of the cyclotron-Cherenkov instability are satisfied for both typical and millisecond pulsars provided that the streaming energy of the bulk plasma is not very high Îłp≈10\gamma_p \approx 10. In a typical pulsar the cyclotron-Cherenkov and Cherenkov-drift resonances occur in the outer parts of magnetosphere at rres≈109cmr_{res} \approx 10^9 cm. This theory can account for various aspects of pulsar phenomenology including the morphology of the pulses, their polarization properties and their spectral behavior. We propose several observational tests for the theory. The most prominent prediction are the high altitudes of the emission region and the linear polarization of conal emission in the plane orthogonal to the local osculating plane of the magnetic field.Comment: 39 pages, 10 figure
    corecore