40 research outputs found
Transition from Fireball to Poynting-flux-dominated Outflow in Three-Episode GRB 160625B
The ejecta composition is an open question in gamma-ray bursts (GRB) physics.
Some GRBs possess a quasi-thermal spectral component in the time-resolved
spectral analysis, suggesting a hot fireball origin. Others show a featureless
non-thermal spectrum known as the "Band" function, consistent with a
synchrotron radiation origin and suggesting that the jet is
Poynting-flux-dominated at the central engine and likely in the emission region
as well. There are also bursts showing a sub-dominant thermal component and a
dominant synchrotron component suggesting a likely hybrid jet composition. Here
we report an extraordinarily bright GRB 160625B, simultaneously observed in
gamma-rays and optical wavelengths, whose prompt emission consists of three
isolated episodes separated by long quiescent intervals, with the durations of
each "sub-burst" being 0.8 s, 35 s, and 212 s, respectively. Its high
brightness (with isotropic peak luminosity L
erg/s) allows us to conduct detailed time-resolved spectral analysis in each
episode, from precursor to main burst and to extended emission. The spectral
properties of the first two sub-bursts are distinctly different, allowing us to
observe the transition from thermal to non-thermal radiation between
well-separated emission episodes within a single GRB. Such a transition is a
clear indication of the change of jet composition from a fireball to a
Poynting-flux-dominated jet.Comment: Revised version reflecting the referees' comments. 27 pages, 11
figures, 5 tables. The final edited version will appear in Nature Astronom
The first 48: Discovery and progenitor constraints on the Type Ia supernova 2013gy
We present an early-phase -band light curve and visual-wavelength spectra
of the normal Type Ia supernova (SN) 2013gy. The light curve is constructed by
determining the appropriate S-corrections to transform KAIT natural-system -
and -band photometry and Carnegie Supernova Project natural-system -band
photometry to the Pan-STARRS1 -band natural photometric system. A Markov
Chain Monte Carlo calculation provides a best-fit single power-law function to
the first ten epochs of photometry described by an exponent of
and a time of first light of MJD
56629.4, which is days (i.e., ~hr)
before the discovery date (2013 December 4.84 UT) and
days before the time of -band maximum (MJD 56648.5). The estimate of
the time of first light is consistent with the explosion time inferred from the
evolution of the Si II 6355 Doppler velocity. Furthermore, discovery
photometry and previous nondetection limits enable us to constrain the
companion radius down to . In addition to our early-time
constraints, we use a deep +235 day nebular-phase spectrum from Magellan/IMACS
to place a stripped H-mass limit of . Combined, these
limits effectively rule out H-rich nondegenerate companions
Asymptomatic neurocognitive disorders in patients infected by HIV: fact or fiction?
Neurocognitive disorders are emerging as a possible complication in patients infected with HIV. Even if asymptomatic, neurocognitive abnormalities are frequently detected using a battery of tests. This supported the creation of asymptomatic neurocognitive impairment (ANI) as a new entity. In a recent article published in BMC Infectious Diseases, Magnus Gisslén and colleagues applied a statistical approach, concluding that there is an overestimation of the actual problem. In fact, about 20% of patients are classified as neurocognitively impaired without a clear impact on daily activities. In the present commentary, we discuss the clinical implications of their findings. Although a cautious approach would indicate a stricter follow-up of patients affected by this disorder, it is premature to consider it as a proper disease. Based on a review of the data in the current literature we conclude that it is urgent to conduct more studies to estimate the overall risk of progression of the asymptomatic neurocognitive impairment. Moreover, it is important to understand whether new biomarkers or neuroimaging tools can help to identify better the most at risk population
Risk of Parkinson's disease after tamoxifen treatment
<p>Abstract</p> <p>Background</p> <p>Women have a reduced risk of developing Parkinson's disease (PD) compared with age-matched men. Neuro-protective effects of estrogen potentially explain this difference. Tamoxifen, commonly used in breast cancer treatment, may interfere with the protective effects of estrogen and increase risk of PD. We compared the rate of PD in Danish breast cancer patients treated with tamoxifen to the rate among those not treated with tamoxifen.</p> <p>Methods</p> <p>A cohort of 15,419 breast cancer patients identified from the Danish Breast Cancer Collaborative Group database was linked to the National Registry of Patients to identify PD diagnoses. Overall risk and rate of PD following identification into the study was compared between patients treated with tamoxifen as adjuvant hormonal therapy and patients not receiving tamoxifen. Time-dependent effects of tamoxifen treatment on PD rate were examined to estimate the likely induction period for tamoxifen.</p> <p>Results</p> <p>In total, 35 cases of PD were identified among the 15,419 breast cancer patients. No overall effect of tamoxifen on rate of PD was observed (HR = 1.3, 95% CI: 0.64-2.5), but a PD hazard ratio of 5.1 (95% CI: 1.0-25) was seen four to six years following initiation of tamoxifen treatment.</p> <p>Conclusions</p> <p>These results provide evidence that the neuro-protective properties of estrogen against PD occurrence may be disrupted by tamoxifen therapy. Tamoxifen treatments may be associated with an increased rate of PD; however these effects act after four years, are of limited duration, and the adverse effect is overwhelmed by the protection against breast recurrence conferred by tamoxifen therapy.</p
Transition from fireball to Poynting-flux-dominated outflow in three-episode GRB 160625B [submitted version]
The ejecta composition of gamma-ray bursts (GRBs) is an open question in GRB physics. Some GRBs possess a quasi-thermal spectral component in the time-resolved spectral analysis, suggesting a hot fireball origin. Some others show an essentially feature-less non-thermal spectrum known as the "Band" function, which can be interpreted as synchrotron radiation in an optically thin region, suggesting a Poynting-flux-dominated jet composition. Here we report an extraordinarily bright GRB 160625B, simultaneously observed in gamma-rays and optical wavelengths, whose prompt emission consists of three dramatically different isolated episodes separated by long quiescent intervals, with the durations of each "sub-burst" being ∼ 0.8 s, 35 s, and 212 s, respectively. The high brightness (with isotropic peak luminosity Lp,iso∼4×1053 erg/s) of this GRB allows us to conduct detailed time-resolved spectral analysis in each episode, from precursor to the main burst and extended emission. Interestingly, the spectral properties of the first two sub-bursts are distinctly different, which allow us for the first time to observe the transition from thermal to non-thermal radiation in a single GRB. Such a transition is a clear indication of the change of jet composition from a fireball to a Poynting-flux-dominated jet
Multi-messenger observations of a binary neutron star merger
On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
Screening for subclinical atherosclerosis by noninvasive methods in asymptomatic patients with risk factors
Xavier Castellon, Vera BogdanovaDepartment of Cardiology, Private Hospital Athis Mons, Paris, FranceAbstract: Atherosclerosis is a leading cause of cardiovascular death due to the increasing prevalence of the disease and the impact of risk factors such as diabetes, obesity or smoking. Sudden cardiac death is the primary consequence of coronary artery disease in 50% of men and 64% of women. Currently the only available strategy to reduce mortality in the at-risk population is primary prevention; the target population must receive screening for atherosclerosis. The value of screening for subclinical atherosclerosis is still relevant, it has become standard clinical practice with the emergence of new noninvasive techniques (radio frequency [RF] measurement of intima-media thickness [RFQIMT] and arterial stiffness [RFQAS], and flow-mediated vasodilatation [FMV]), which have been used by our team since 2007 and are based on detection marker integrators which reflect the deleterious effect of risk factors on arterial remodeling before the onset of clinical events. These techniques allow the study of values according to age and diagnosis of the pathological value, the thickness of the intima media (RFQIMT), the speed of the pulse wave (RFQAS), and the degree of endothelial dysfunction (FMV). This screening is justified in asymptomatic patients with cardiovascular risk factors (hypertension, diabetes, obesity, dyslipidemia, and tobacco smoking). Studies conducted by RF coupled with two-dimensional echo since 2007 have led to a more detailed analysis of the state of the arterial wall. The various examinations allow an assessment of the degree of subclinical atherosclerosis and its impact on arterial remodeling and endothelial function. The use of noninvasive imaging in screening and early detection of subclinical atherosclerosis is reliable and reproducible and allows us to assess the susceptibility of our patients with risk factors and ensures better monitoring of atherosclerosis, thus reducing the occurrence of cardiovascular events in the long term.Keywords: radio frequency, RF QIMT, RF QAS, FMV, arterial age, velocimetry, MR