36 research outputs found

    Assessment at UK medical schools varies substantially in volume, type and intensity and correlates with postgraduate attainment

    Get PDF
    BACKGROUND: In the United Kingdom (UK), medical schools are free to develop local systems and policies that govern student assessment and progression. Successful completion of an undergraduate medical degree results in the automatic award of a provisional licence to practice medicine by the General Medical Council (GMC). Such a licensing process relies heavily on the assumption that individual schools develop similarly rigorous assessment policies. Little work has evaluated variability of undergraduate medical assessment between medical schools. That absence is important in the light of the GMC's recent announcement of the introduction of the UKMLA (UK Medical Licensing Assessment) for all doctors who wish to practise in the UK. The present study aimed to quantify and compare the volume, type and intensity of summative assessment across medicine (A100) courses in the United Kingdom, and to assess whether intensity of assessment correlates with the postgraduate attainment of doctors from these schools. METHODS: Locally knowledgeable students in each school were approached to take part in guided-questionnaire interviews via telephone or Skype(TM). Their understanding of assessment at their medical school was probed, and later validated with the assessment department of the respective medical school. We gathered data for 25 of 27 A100 programmes in the UK and compared volume, type and intensity of assessment between schools. We then correlated these data with the mean first-attempt score of graduates sitting MRCGP and MRCP(UK), as well as with UKFPO selection measures. RESULTS: The median written assessment volume across all schools was 2000 min (mean = 2027, SD = 586, LQ = 1500, UQ = 2500, range = 1000-3200) and 1400 marks (mean = 1555, SD = 463, LQ = 1200, UQ = 1800, range = 1100-2800). The median practical assessment volume was 400 min (mean = 472, SD = 207, LQ = 400, UQ = 600, range = 200-1000). The median intensity (minutes per mark ratio) of summative written assessment was 1.24 min per mark (mean = 1.28, SD = 0.30, LQ = 1.11, UQ = 1.37, range = 0.85-2.08). An exploratory analysis suggested a significant correlation of total assessment time with mean first-attempt score on both the knowledge and the clinical assessments of MRCGP and of MRCP(UK). CONCLUSIONS: There are substantial differences in the volume, format and intensity of undergraduate assessment between UK medical schools. These findings suggest a potential for differences in the reliability of detecting poorly performing students, or differences in identifying and stratifying academically equivalent students for ranking in the Foundation Programme Application System (FPAS). Furthermore, these differences appear to directly correlate with performance in postgraduate examinations. Taken together, our findings highlight highly variable local assessment procedures that warrant further investigation to establish their potential impact on students

    Mortality and pulmonary complications in patients undergoing surgery with perioperative SARS-CoV-2 infection: an international cohort study

    Get PDF
    Background: The impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on postoperative recovery needs to be understood to inform clinical decision making during and after the COVID-19 pandemic. This study reports 30-day mortality and pulmonary complication rates in patients with perioperative SARS-CoV-2 infection. Methods: This international, multicentre, cohort study at 235 hospitals in 24 countries included all patients undergoing surgery who had SARS-CoV-2 infection confirmed within 7 days before or 30 days after surgery. The primary outcome measure was 30-day postoperative mortality and was assessed in all enrolled patients. The main secondary outcome measure was pulmonary complications, defined as pneumonia, acute respiratory distress syndrome, or unexpected postoperative ventilation. Findings: This analysis includes 1128 patients who had surgery between Jan 1 and March 31, 2020, of whom 835 (74·0%) had emergency surgery and 280 (24·8%) had elective surgery. SARS-CoV-2 infection was confirmed preoperatively in 294 (26·1%) patients. 30-day mortality was 23·8% (268 of 1128). Pulmonary complications occurred in 577 (51·2%) of 1128 patients; 30-day mortality in these patients was 38·0% (219 of 577), accounting for 81·7% (219 of 268) of all deaths. In adjusted analyses, 30-day mortality was associated with male sex (odds ratio 1·75 [95% CI 1·28–2·40], p\textless0·0001), age 70 years or older versus younger than 70 years (2·30 [1·65–3·22], p\textless0·0001), American Society of Anesthesiologists grades 3–5 versus grades 1–2 (2·35 [1·57–3·53], p\textless0·0001), malignant versus benign or obstetric diagnosis (1·55 [1·01–2·39], p=0·046), emergency versus elective surgery (1·67 [1·06–2·63], p=0·026), and major versus minor surgery (1·52 [1·01–2·31], p=0·047). Interpretation: Postoperative pulmonary complications occur in half of patients with perioperative SARS-CoV-2 infection and are associated with high mortality. Thresholds for surgery during the COVID-19 pandemic should be higher than during normal practice, particularly in men aged 70 years and older. Consideration should be given for postponing non-urgent procedures and promoting non-operative treatment to delay or avoid the need for surgery. Funding: National Institute for Health Research (NIHR), Association of Coloproctology of Great Britain and Ireland, Bowel and Cancer Research, Bowel Disease Research Foundation, Association of Upper Gastrointestinal Surgeons, British Association of Surgical Oncology, British Gynaecological Cancer Society, European Society of Coloproctology, NIHR Academy, Sarcoma UK, Vascular Society for Great Britain and Ireland, and Yorkshire Cancer Research

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Endurance training partially reverses dietary-induced leptin resistance in rodent skeletal muscle

    No full text
    Leptin acutely stimulates skeletal muscle fatty acid (FA) metabolism in lean rodents and humans. This stimulatory effect is eliminated following the feeding of high-fat diets in rodents as well as in obese humans. The mechanism(s) responsible for the development of skeletal muscle leptin resistance is unknown; however, a role for increased suppressor of cytokine signaling-3 (SOCS3) inhibition of the leptin receptor has been demonstrated in other rodent tissues. Furthermore, whether exercise intervention is an effective strategy to prevent or attenuate the development of skeletal muscle leptin resistance has not been investigated. Toward this end, 48 Sprague-Dawley rats (175-190 g; 2-3 mo of age) were fed control or high-fat (60% kcal) diets for 4 wk and either remained sedentary or were treadmill trained. In control diet-fed animals that remained sedentary (CS) or were endurance trained (CT), leptin stimulated FA oxidation (CS +32 ± 15%, CT +30 ± 17%; P < 0.05), suppressed triacylglycerol (TAG) esterification (CS -17 ± 7%, CT -24 ± 8%; P < 0.05), and reduced the esterification-to-oxidation ratio (CS -19 ± 13%, CT -29 ± 10%; P < 0.001) in soleus muscle. High-fat feeding induced leptin resistance in the soleus of sedentary rats (FS), whereas endurance exercise training (FT) restored the ability of leptin to suppress TAG esterification (-19 ± 9%, P = 0.038). Training did not completely restore the ability of leptin to stimulate FA oxidation. High-fat diets stimulated SOCS3 mRNA expression irrespective of training status (FS +451 ± 120%, P = 0.024; FT +381 ± 141%, P = 0.023). Thus the development of skeletal muscle leptin resistance appears to involve an increase in SOCS3 mRNA expression. Endurance training was generally effective in preventing the development of leptin resistance, although this did not appear to require a decrease in SOCS3 expression. Future studies should examine changes in the actual protein content of SOCS3 in muscle and establish whether aerobic exercise is also effective in treating leptin resistance in humans

    Loci associated with N-glycosylation of human immunoglobulin G show pleiotropy with autoimmune diseases and haematological cancers

    Get PDF
    Contains fulltext : 118733.pdf (publisher's version ) (Open Access)Glycosylation of immunoglobulin G (IgG) influences IgG effector function by modulating binding to Fc receptors. To identify genetic loci associated with IgG glycosylation, we quantitated N-linked IgG glycans using two approaches. After isolating IgG from human plasma, we performed 77 quantitative measurements of N-glycosylation using ultra-performance liquid chromatography (UPLC) in 2,247 individuals from four European discovery populations. In parallel, we measured IgG N-glycans using MALDI-TOF mass spectrometry (MS) in a replication cohort of 1,848 Europeans. Meta-analysis of genome-wide association study (GWAS) results identified 9 genome-wide significant loci (P<2.27 x 10(-9)) in the discovery analysis and two of the same loci (B4GALT1 and MGAT3) in the replication cohort. Four loci contained genes encoding glycosyltransferases (ST6GAL1, B4GALT1, FUT8, and MGAT3), while the remaining 5 contained genes that have not been previously implicated in protein glycosylation (IKZF1, IL6ST-ANKRD55, ABCF2-SMARCD3, SUV420H1, and SMARCB1-DERL3). However, most of them have been strongly associated with autoimmune and inflammatory conditions (e.g., systemic lupus erythematosus, rheumatoid arthritis, ulcerative colitis, Crohn's disease, diabetes type 1, multiple sclerosis, Graves' disease, celiac disease, nodular sclerosis) and/or haematological cancers (acute lymphoblastic leukaemia, Hodgkin lymphoma, and multiple myeloma). Follow-up functional experiments in haplodeficient Ikzf1 knock-out mice showed the same general pattern of changes in IgG glycosylation as identified in the meta-analysis. As IKZF1 was associated with multiple IgG N-glycan traits, we explored biomarker potential of affected N-glycans in 101 cases with SLE and 183 matched controls and demonstrated substantial discriminative power in a ROC-curve analysis (area under the curve = 0.842). Our study shows that it is possible to identify new loci that control glycosylation of a single plasma protein using GWAS. The results may also provide an explanation for the reported pleiotropy and antagonistic effects of loci involved in autoimmune diseases and haematological cancer

    Species diversification – which species should we use?

    Get PDF
    Large detector systems for particle and astroparticle physics; Particle tracking detectors; Gaseous detectors; Calorimeters; Cherenkov detectors; Particle identification methods; Photon detectors for UV. visible and IR photons; Detector alignment and calibration methods; Detector cooling and thermo-stabilization; Detector design and construction technologies and materials. The LHCb experiment is dedicated to precision measurements of CP violation and rare decays of B hadrons at the Large Hadron Collider (LHC) at CERN (Geneva). The initial configuration and expected performance of the detector and associated systems. as established by test beam measurements and simulation studies. is described. © 2008 IOP Publishing Ltd and SISSA
    corecore