66 research outputs found

    Nutrient limitation of periphyton growth in arctic lakes in south-west Greenland

    Get PDF
    Many arctic lakes are oligotrophic systems where phototrophic growth is controlled by nutrient supply. Recent anthropogenic nutrient loading is associated with biological and/or physico-chemical change in several lakes across the arctic. Shifts in nutrient limitation (nitrogen (N), phosphorus (P), or N ? P) and associated effects on the growth and composition of algal communities are commonly reported. The Kangerlussuaq region of south-west Greenland forms a major lake district which is considered to receive little direct anthropogenic disturbance. However, long-range transport of pollutant N is now reaching Greenland, and it was hypothesised that a precipitation gradient from the inland ice sheet margin to the coast might also deliver increased N deposition. In situ nutrient bioassays were deployed in three lakes across the region: ice sheet margin, inland (close to Kangerlussuaq) and the coast (near Sisimiut), to determine nutrient limitation of lakes and investigate any effects of nutrients on periphyton growth and community composition. Nutrient limitation differed amongst lakes: N limitation (ice sheet margin), N and P limitation (inland) and N ? P co-limitation (coast). Factors including variation in N supply, ice phenology, seasonal algal succession, community structure and physical limnology are explored as mechanisms to explain differences amongst lakes. Nutrient limitation of arctic lakes and associated ecological impacts are highly variable, even across small geographic areas. In this highly sensitive region, future environmental change scenarios carry a strong risk of significantly altering nutrient limitation; in turn, potentially severely impacting lake structure and function

    Spatial variations in snowpack chemistry and isotopic composition of NO3- along a nitrogen deposition gradient in West Greenland

    Get PDF
    Snowpack chemistry, nitrate stable isotopes and net deposition fluxes for the largest ice-free region in Greenland were investigated to determine whether there are spatial gradients from the ice sheet margin to the coast linked to a gradient in precipitation. Late-season snowpack was sampled in March 2011 at 8 locations within 3 lake catchments in each of 3 regions (ice sheet margin in the east, central area near Kelly Ville and the coastal zone to the west). At the coast, snowpack accumulation averaged 181 mm snow water equivalent (SWE), compared with 36 mm SWE by the ice sheet. Coastal snowpack showed significantly greater concentrations of marine salts (Na+, Cl−, other major cations), ammonium (regional means 1.4–2.7 µmol L−1), total and non-sea salt sulfate (total 1.8–7.7, non-sea salt 1.0–1.8 µmol L−1) than the two inland regions. Nitrate (1.5–2.4 µmol L−1) showed significantly lower concentrations at the coast. Despite lower concentrations, higher precipitation at the coast results in a strong deposition gradient for NO3− as well as NH4+ and non-sea salt sulfate (nss-SO42−) increasing from the inland regions to the coast (lowest at Kelly Ville 6, 4 and 3; highest at coast 9, 17 and 11 mol ha−1 yr−1 of NO3−, NH4+ and nss-SO42− respectively). The δ(15N) of snowpack NO3− shows a significant decrease from the ice sheet margin (−7.5 ‰) to the coast (−11.3 ‰). We attribute the spatial gradient of δ(15N) in SW Greenland to post-deposition processing rather than differing sources because of (1) the climatic gradient from ice sheet margin to coast, (2) within-catchment isotopic differences between terrestrial snowpack and lake-ice snowpack, and (3) similarities between fresh snow (rather than accumulated snowpack) at Kelly Ville and the coast. Hence the δ(15N) of coastal snowpack is most representative of snowfall in SW Greenland, but after deposition the effects of photolysis, volatilization and sublimation lead to enrichment of the remaining snowpack with the greatest effect in inland areas of low precipitation and high sublimation losses

    Long-term perspectives on terrestrial and aquatic carbon cycling from palaeolimnology

    Get PDF
    Lakes are active processors and collectors of carbon (C) and thus recognized as quantitatively important within the terrestrial C cycle. Better integration of palaeolimnology (lake sediment core analyses) with limnological or modelling approaches has the potential to enhance understanding of lacustrine C processing and sequestration. Palaeolimnology simultaneously assimilates materials from across lake habitats, terrestrial watersheds and airsheds to provide a uniquely broad overview of the terrestrial-atmospheric-aquatic linkages across spatial scales. The examination of past changes over decadal-millenial timescales via palaeolimnology can inform understanding and prediction of future changes in C cycling. With a particular, but not exclusive, focus on northern latitudes we examine the methodological approaches of palaeolimnology, focusing on how relatively standard and well tested techniques might be applied to address questions of relevance to the C cycle. We consider how palaeolimnology, limnology and sedimentation studies might be linked to provide more quantitative and holistic estimates lake C cycling. Finally, we use palaeolimnological examples to consider how changes such as terrestrial vegetation cover, permafrost thaw, the formation of new lakes and reservoirs, hydrological modification of inorganic C processing, land use change, soil erosion and disruption to global nitrogen and phosphorus cycles might influence lake C cycling

    Stable isotopes reveal independent carbon pools across an Arctic hydro‐climatic gradient: implications for the fate of carbon in warmer and drier conditions

    Get PDF
    Arctic lakes are poised for substantial changes to their carbon (C) cycles in the near future. Autochthonous processes in lakes which consume inorganic C and create biomass that can be sequestered in sediments are accompanied by allochthonous inputs of organic matter from the surrounding watershed. Both C sources can be mineralized and degassed as CO2, but also become recalcitrant and accumulate in pelagic waters. Using stable carbon isotope (δ13C) values and elemental ratios as geochemical proxies, we investigated diverse organic matter sources to lakes located across a hydro‐climatic gradient in Southwest Greenland. Particulate organic matter (POM) and sediments were clearly of autochthonous algal origin, while dissolved organic matter (DOM) was a mix between autochthonous macrophytes and allochthonous watershed sources. Our results imply that a warmer and drier Arctic will lead to decoupled C pools: a water column dominated by increasingly autochthonous, macrophytic DOM, and sediments dominated by autochthonous algal POM

    Shifts in the source and composition of dissolved organic matter in Southwest Greenland lakes along a regional hydro-climatic gradient

    Get PDF
    Dissolved organic matter (DOM) concentration and quality were examined from Arctic lakes located in three clusters across south-west (SW) Greenland, covering the regional climatic gradient: cool, wet coastal zone; dry inland interior; and cool, dry ice-marginal areas. We hypothesized that differences in mean annual precipitation between sites would result in a reduced hydrological connectivity between lakes and their catchments and that this concentrates degraded DOM. The DOM in the inland lake group was characterized by a lower aromaticity and molecular weight, a low soil-like fluorescence, and carbon stable isotope (δ 13 C-DOC) values enriched by ~2‰ relative to the coastal group. DOC-specific absorbance (SUVA 254 ) and DOC-specific soil-like fluorescence (SUVF C1 ) revealed seasonal and climatic gradients across which DOM exhibited a dynamic we term “pulse-process”: Pulses of DOM exported from soils to lakes during snow and ice melt were followed by pulses of autochthonous DOM inputs (possibly from macrophytes), and their subsequent photochemical and microbial processing. These effects regulated the dynamics of DOM in the inland lakes and suggested that if circumpolar lakes currently situated in cool wetter climatic regimes with strong hydrological connectivity have reduced connectivity under a drier future climate, they may evolve toward an end-point of large stocks of highly degraded DOC, equivalent to the inland lakes in the present study. The regional climatic gradient across SW Greenland and its influence on DOM properties in these lakes provide a model of possible future changes to lake C cycling in high-latitude systems where climatic changes are most pronounced

    The Arctic in the twenty-first century: changing biogeochemical linkages across a paraglacial landscape of Greenland

    Get PDF
    The Kangerlussuaq area of southwest Greenland encompasses diverse ecological, geomorphic, and climate gradients that function over a range of spatial and temporal scales. Ecosystems range from the microbial communities on the ice sheet and moisture-stressed terrestrial vegetation (and their associated herbivores) to freshwater and oligosaline lakes. These ecosystems are linked by a dynamic glacio-fluvial-aeolian geomorphic system that transports water, geological material, organic carbon and nutrients from the glacier surface to adjacent terrestrial and aquatic systems. This paraglacial system is now subject to substantial change because of rapid regional warming since 2000. Here, we describe changes in the eco- and geomorphic systems at a range of timescales and explore rapid future change in the links that integrate these systems. We highlight the importance of cross-system subsidies at the landscape scale and, importantly, how these might change in the near future as the Arctic is expected to continue to warm

    Arctic climate shifts drive rapid ecosystem responses across the West Greenland landscape

    Get PDF
    Prediction of high latitude response to climate change is hampered by poor understanding of the role of nonlinear changes in ecosystem forcing and response. While the effects of nonlinear climate change are often delayed or dampened by internal ecosystem dynamics, recent warming events in the Arctic have driven rapid environmental response, raising questions of how terrestrial and freshwater systems in this region may shift in response to abrupt climate change. We quantified environmental responses to recent abrupt climate change in West Greenland using long-term monitoring and paleoecological reconstructions. Using >40 years of weather data, we found that after 1994, mean June air temperatures shifted 2.2 °C higher and mean winter precipitation doubled from 21 to 40 mm; since 2006, mean July air temperatures shifted 1.1 °C higher. Nonlinear environmental responses occurred with or shortly after these abrupt climate shifts, including increasing ice sheet discharge, increasing dust, advancing plant phenology, and in lakes, earlier ice out and greater diversity of algal functional traits. Our analyses reveal rapid environmental responses to nonlinear climate shifts, underscoring the highly responsive nature of Arctic ecosystems to abrupt transitions

    Alcohol use and burden for 195 countries and territories, 1990-2016 : a systematic analysis for the Global Burden of Disease Study 2016

    Get PDF
    Background Alcohol use is a leading risk factor for death and disability, but its overall association with health remains complex given the possible protective effects of moderate alcohol consumption on some conditions. With our comprehensive approach to health accounting within the Global Burden of Diseases, Injuries, and Risk Factors Study 2016, we generated improved estimates of alcohol use and alcohol-attributable deaths and disability-adjusted life-years (DALYs) for 195 locations from 1990 to 2016, for both sexes and for 5-year age groups between the ages of 15 years and 95 years and older. Methods Using 694 data sources of individual and population-level alcohol consumption, along with 592 prospective and retrospective studies on the risk of alcohol use, we produced estimates of the prevalence of current drinking, abstention, the distribution of alcohol consumption among current drinkers in standard drinks daily (defined as 10 g of pure ethyl alcohol), and alcohol-attributable deaths and DALYs. We made several methodological improvements compared with previous estimates: first, we adjusted alcohol sales estimates to take into account tourist and unrecorded consumption; second, we did a new meta-analysis of relative risks for 23 health outcomes associated with alcohol use; and third, we developed a new method to quantify the level of alcohol consumption that minimises the overall risk to individual health. Findings Globally, alcohol use was the seventh leading risk factor for both deaths and DALYs in 2016, accounting for 2.2% (95% uncertainty interval [UI] 1.5-3.0) of age-standardised female deaths and 6.8% (5.8-8.0) of age-standardised male deaths. Among the population aged 15-49 years, alcohol use was the leading risk factor globally in 2016, with 3.8% (95% UI 3.2-4-3) of female deaths and 12.2% (10.8-13-6) of male deaths attributable to alcohol use. For the population aged 15-49 years, female attributable DALYs were 2.3% (95% UI 2.0-2.6) and male attributable DALYs were 8.9% (7.8-9.9). The three leading causes of attributable deaths in this age group were tuberculosis (1.4% [95% UI 1. 0-1. 7] of total deaths), road injuries (1.2% [0.7-1.9]), and self-harm (1.1% [0.6-1.5]). For populations aged 50 years and older, cancers accounted for a large proportion of total alcohol-attributable deaths in 2016, constituting 27.1% (95% UI 21.2-33.3) of total alcohol-attributable female deaths and 18.9% (15.3-22.6) of male deaths. The level of alcohol consumption that minimised harm across health outcomes was zero (95% UI 0.0-0.8) standard drinks per week. Interpretation Alcohol use is a leading risk factor for global disease burden and causes substantial health loss. We found that the risk of all-cause mortality, and of cancers specifically, rises with increasing levels of consumption, and the level of consumption that minimises health loss is zero. These results suggest that alcohol control policies might need to be revised worldwide, refocusing on efforts to lower overall population-level consumption.Peer reviewe

    Measuring progress from 1990 to 2017 and projecting attainment to 2030 of the health-related Sustainable Development Goals for 195 countries and territories: a systematic analysis for the Global Burden of Disease Study 2017

    Get PDF
    Background: Efforts to establish the 2015 baseline and monitor early implementation of the UN Sustainable Development Goals (SDGs) highlight both great potential for and threats to improving health by 2030. To fully deliver on the SDG aim of “leaving no one behind”, it is increasingly important to examine the health-related SDGs beyond national-level estimates. As part of the Global Burden of Diseases, Injuries, and Risk Factors Study 2017 (GBD 2017), we measured progress on 41 of 52 health-related SDG indicators and estimated the health-related SDG index for 195 countries and territories for the period 1990–2017, projected indicators to 2030, and analysed global attainment. Methods: We measured progress on 41 health-related SDG indicators from 1990 to 2017, an increase of four indicators since GBD 2016 (new indicators were health worker density, sexual violence by non-intimate partners, population census status, and prevalence of physical and sexual violence [reported separately]). We also improved the measurement of several previously reported indicators. We constructed national-level estimates and, for a subset of health-related SDGs, examined indicator-level differences by sex and Socio-demographic Index (SDI) quintile. We also did subnational assessments of performance for selected countries. To construct the health-related SDG index, we transformed the value for each indicator on a scale of 0–100, with 0 as the 2\ub75th percentile and 100 as the 97\ub75th percentile of 1000 draws calculated from 1990 to 2030, and took the geometric mean of the scaled indicators by target. To generate projections through 2030, we used a forecasting framework that drew estimates from the broader GBD study and used weighted averages of indicator-specific and country-specific annualised rates of change from 1990 to 2017 to inform future estimates. We assessed attainment of indicators with defined targets in two ways: first, using mean values projected for 2030, and then using the probability of attainment in 2030 calculated from 1000 draws. We also did a global attainment analysis of the feasibility of attaining SDG targets on the basis of past trends. Using 2015 global averages of indicators with defined SDG targets, we calculated the global annualised rates of change required from 2015 to 2030 to meet these targets, and then identified in what percentiles the required global annualised rates of change fell in the distribution of country-level rates of change from 1990 to 2015. We took the mean of these global percentile values across indicators and applied the past rate of change at this mean global percentile to all health-related SDG indicators, irrespective of target definition, to estimate the equivalent 2030 global average value and percentage change from 2015 to 2030 for each indicator. Findings: The global median health-related SDG index in 2017 was 59\ub74 (IQR 35\ub74–67\ub73), ranging from a low of 11\ub76 (95% uncertainty interval 9\ub76–14\ub70) to a high of 84\ub79 (83\ub71–86\ub77). SDG index values in countries assessed at the subnational level varied substantially, particularly in China and India, although scores in Japan and the UK were more homogeneous. Indicators also varied by SDI quintile and sex, with males having worse outcomes than females for non-communicable disease (NCD) mortality, alcohol use, and smoking, among others. Most countries were projected to have a higher health-related SDG index in 2030 than in 2017, while country-level probabilities of attainment by 2030 varied widely by indicator. Under-5 mortality, neonatal mortality, maternal mortality ratio, and malaria indicators had the most countries with at least 95% probability of target attainment. Other indicators, including NCD mortality and suicide mortality, had no countries projected to meet corresponding SDG targets on the basis of projected mean values for 2030 but showed some probability of attainment by 2030. For some indicators, including child malnutrition, several infectious diseases, and most violence measures, the annualised rates of change required to meet SDG targets far exceeded the pace of progress achieved by any country in the recent past. We found that applying the mean global annualised rate of change to indicators without defined targets would equate to about 19% and 22% reductions in global smoking and alcohol consumption, respectively; a 47% decline in adolescent birth rates; and a more than 85% increase in health worker density per 1000 population by 2030. Interpretation: The GBD study offers a unique, robust platform for monitoring the health-related SDGs across demographic and geographic dimensions. Our findings underscore the importance of increased collection and analysis of disaggregated data and highlight where more deliberate design or targeting of interventions could accelerate progress in attaining the SDGs. Current projections show that many health-related SDG indicators, NCDs, NCD-related risks, and violence-related indicators will require a concerted shift away from what might have driven past gains—curative interventions in the case of NCDs—towards multisectoral, prevention-oriented policy action and investments to achieve SDG aims. Notably, several targets, if they are to be met by 2030, demand a pace of progress that no country has achieved in the recent past. The future is fundamentally uncertain, and no model can fully predict what breakthroughs or events might alter the course of the SDGs. What is clear is that our actions—or inaction—today will ultimately dictate how close the world, collectively, can get to leaving no one behind by 2030

    Measuring progress from 1990 to 2017 and projecting attainment to 2030 of the health-related Sustainable Development Goals for 195 countries and territories: a systematic analysis for the Global Burden of Disease Study 2017.

    Get PDF
    BACKGROUND: Efforts to establish the 2015 baseline and monitor early implementation of the UN Sustainable Development Goals (SDGs) highlight both great potential for and threats to improving health by 2030. To fully deliver on the SDG aim of 'leaving no one behind', it is increasingly important to examine the health-related SDGs beyond national-level estimates. As part of the Global Burden of Diseases, Injuries, and Risk Factors Study 2017 (GBD 2017), we measured progress on 41 of 52 health-related SDG indicators and estimated the health-related SDG index for 195 countries and territories for the period 1990-2017, projected indicators to 2030, and analysed global attainment. METHODS: We measured progress on 41 health-related SDG indicators from 1990 to 2017, an increase of four indicators since GBD 2016 (new indicators were health worker density, sexual violence by non-intimate partners, population census status, and prevalence of physical and sexual violence [reported separately]). We also improved the measurement of several previously reported indicators. We constructed national-level estimates and, for a subset of health-related SDGs, examined indicator-level differences by sex and Socio-demographic Index (SDI) quintile. We also did subnational assessments of performance for selected countries. To construct the health-related SDG index, we transformed the value for each indicator on a scale of 0-100, with 0 as the 2·5th percentile and 100 as the 97·5th percentile of 1000 draws calculated from 1990 to 2030, and took the geometric mean of the scaled indicators by target. To generate projections through 2030, we used a forecasting framework that drew estimates from the broader GBD study and used weighted averages of indicator-specific and country-specific annualised rates of change from 1990 to 2017 to inform future estimates. We assessed attainment of indicators with defined targets in two ways: first, using mean values projected for 2030, and then using the probability of attainment in 2030 calculated from 1000 draws. We also did a global attainment analysis of the feasibility of attaining SDG targets on the basis of past trends. Using 2015 global averages of indicators with defined SDG targets, we calculated the global annualised rates of change required from 2015 to 2030 to meet these targets, and then identified in what percentiles the required global annualised rates of change fell in the distribution of country-level rates of change from 1990 to 2015. We took the mean of these global percentile values across indicators and applied the past rate of change at this mean global percentile to all health-related SDG indicators, irrespective of target definition, to estimate the equivalent 2030 global average value and percentage change from 2015 to 2030 for each indicator
    corecore