542 research outputs found
Biominerals - source and inspiration for novel advanced materials
Biomineralization seems an odd sort of word. How can you combine biology and minerals? However, a quick look around brings to light many familiar objects that are examples of biominerals. Most dramatic are the coral reefs and sea shells of the marine environment (calcium carbonate) and human bone and teeth (calcium hydroxyapatite) but there are many other examples. In the past 10 years, an increasing number of biominerals has been reported (Table 1). Interest in the biological and chemical processes that lead to biomineralization, howeyer, has only developed rather recently. Early observations were made by paleontologists who were interested in the preservation, through geological time, of the hard parts of organisms such as shells and skeletons but only in 1989 did the field really come of age with the almost simultaneous publication of three monographs covering current knowledge of the biological, biochemical, chemical and taxonomic aspects of biomineralization (Mann et al. 1989; Lowenstam & Weiner 1989; Simkiss & Wilbur 1989)
The floor in the interplanetary magnetic field: Estimation on the basis of relative duration of ICME observations in solar wind during 1976-2000
To measure the floor in interplanetary magnetic field and estimate the time-
invariant open magnetic flux of Sun, it is necessary to know a part of magnetic
field of Sun carried away by CMEs. In contrast with previous papers, we did not
use global solar parameters: we identified different large-scale types of solar
wind for 1976-2000 interval, obtained a fraction of interplanetary CMEs (ICMEs)
and calculated magnitude of interplanetary magnetic field B averaged over 2
Carrington rotations. The floor of magnetic field is estimated as B value at
solar cycle minimum when the ICMEs were not observed and it was calculated to
be 4,65 \pm 6,0 nT. Obtained value is in a good agreement with previous
results.Comment: 10 pages, 2 figures, submitted in GR
The challenges of intersectionality: Researching difference in physical education
Researching the intersection of class, race, gender, sexuality and disability raises many issues for educational research. Indeed, Maynard (2002, 33) has recently argued that ‘difference is one of the most significant, yet unresolved, issues for feminist and social thinking at the beginning of the twentieth century’. This paper reviews some of the key imperatives of working with ‘intersectional theory’ and explores the extent to these debates are informing research around difference in education and Physical Education (PE). The first part of the paper highlights some key issues in theorising and researching intersectionality before moving on to consider how difference has been addressed within PE. The paper then considers three ongoing challenges of intersectionality – bodies and embodiment, politics and practice and empirical research. The paper argues for a continued focus on the specific context of PE within education for its contribution to these questions
On the structure and evolution of a polar crown prominence/filament system
Polar crown prominences are made of chromospheric plasma partially circling
the Suns poles between 60 and 70 degree latitude. We aim to diagnose the 3D
dynamics of a polar crown prominence using high cadence EUV images from the
Solar Dynamics Observatory (SDO)/AIA at 304 and 171A and the Ahead spacecraft
of the Solar Terrestrial Relations Observatory (STEREO-A)/EUVI at 195A. Using
time series across specific structures we compare flows across the disk in 195A
with the prominence dynamics seen on the limb. The densest prominence material
forms vertical columns which are separated by many tens of Mm and connected by
dynamic bridges of plasma that are clearly visible in 304/171A two-color
images. We also observe intermittent but repetitious flows with velocity 15
km/s in the prominence that appear to be associated with EUV bright points on
the solar disk. The boundary between the prominence and the overlying cavity
appears as a sharp edge. We discuss the structure of the coronal cavity seen
both above and around the prominence. SDO/HMI and GONG magnetograms are used to
infer the underlying magnetic topology. The evolution and structure of the
prominence with respect to the magnetic field seems to agree with the filament
linkage model.Comment: 24 pages, 14 figures, Accepted for publication in Solar Physics
Journal, Movies can be found at http://www2.mps.mpg.de/data/outgoing/panesar
An Extreme Solar Event of 20 January 2005: Properties of the Flare and the Origin of Energetic Particles
The extreme solar and SEP event of 20 January 2005 is analyzed from two
perspectives. Firstly, we study features of the main phase of the flare, when
the strongest emissions from microwaves up to 200 MeV gamma-rays were observed.
Secondly, we relate our results to a long-standing controversy on the origin of
SEPs arriving at Earth, i.e., acceleration in flares, or shocks ahead of CMEs.
All emissions from microwaves up to 2.22 MeV line gamma-rays during the main
flare phase originated within a compact structure located just above sunspot
umbrae. A huge radio burst with a frequency maximum at 30 GHz was observed,
indicating the presence of a large number of energetic electrons in strong
magnetic fields. Thus, protons and electrons responsible for flare emissions
during its main phase were accelerated within the magnetic field of the active
region. The leading, impulsive parts of the GLE, and highest-energy gamma-rays
identified with pi^0-decay emission, are similar and correspond in time. The
origin of the pi^0-decay gamma-rays is argued to be the same as that of lower
energy emissions. We estimate the sky-plane speed of the CME to be 2000-2600
km/s, i.e., high, but of the same order as preceding non-GLE-related CMEs from
the same active region. Hence, the flare itself rather than the CME appears to
determine the extreme nature of this event. We conclude that the acceleration,
at least, to sub-relativistic energies, of electrons and protons, responsible
for both the flare emissions and the leading spike of SEP/GLE by 07 UT, are
likely to have occurred simultaneously within the flare region. We do not rule
out a probable contribution from particles accelerated in the CME-driven shock
for the leading GLE spike, which seemed to dominate later on.Comment: 34 pages, 14 Postscript figures. Solar Physics, accepted. A typo
corrected. The original publication is available at
http://www.springerlink.co
Intrauterine devices and endometrial cancer risk : a pooled analysis of the Epidemiology of Endometrial Cancer Consortium
Intrauterine devices (IUDs), long-acting and reversible contraceptives, induce a number of immunological and biochemical changes in the uterine environment that could affect endometrial cancer (EC) risk. We addressed this relationship through a pooled analysis of data collected in the Epidemiology of Endometrial Cancer Consortium. We combined individual-level data from 4 cohort and 14 case-control studies, in total 8,801 EC cases and 15,357 controls. Using multivariable logistic regression, we estimated pooled odds ratios (pooled-ORs) and 95% confidence intervals (CIs) for EC risk associated with ever use, type of device, ages at first and last use, duration of use and time since last use, stratified by study and adjusted for confounders. Ever use of IUDs was inversely related to EC risk (pooled-OR = 0.81, 95% CI = 0.74-0.90). Compared with never use, reduced risk of EC was observed for inert IUDs (pooled-OR = 0.69, 95% CI = 0.58-0.82), older age at first use (≥35 years pooled-OR = 0.53, 95% CI = 0.43-0.67), older age at last use (≥45 years pooled-OR = 0.60, 95% CI = 0.50-0.72), longer duration of use (≥10 years pooled-OR = 0.61, 95% CI = 0.52-0.71) and recent use (within 1 year of study entry pooled-OR = 0.39, 95% CI = 0.30-0.49). Future studies are needed to assess the respective roles of detection biases and biologic effects related to foreign body responses in the endometrium, heavier bleeding (and increased clearance of carcinogenic cells) and localized hormonal changes
Fine-Scale Mapping of the 4q24 Locus Identifies Two Independent Loci Associated with Breast Cancer Risk
Background: A recent association study identified a common variant (rs9790517) at 4q24 to be associated with breast cancer risk. Independent association signals and potential functional variants in this locus have not been explored.
Methods: We conducted a fine-mapping analysis in 55,540 breast cancer cases and 51,168 controls from the Breast Cancer Association Consortium.
Results: Conditional analyses identified two independent association signals among women of European ancestry, represented by rs9790517 [conditional P = 2.51 × 10−4; OR, 1.04; 95% confidence interval (CI), 1.02–1.07] and rs77928427 (P = 1.86 × 10−4; OR, 1.04; 95% CI, 1.02–1.07). Functional annotation using data from the Encyclopedia of DNA Elements (ENCODE) project revealed two putative functional variants, rs62331150 and rs73838678 in linkage disequilibrium (LD) with rs9790517 (r2 ≥ 0.90) residing in the active promoter or enhancer, respectively, of the nearest gene, TET2. Both variants are located in DNase I hypersensitivity and transcription factor–binding sites. Using data from both The Cancer Genome Atlas (TCGA) and Molecular Taxonomy of Breast Cancer International Consortium (METABRIC), we showed that rs62331150 was associated with level of expression of TET2 in breast normal and tumor tissue.
Conclusion: Our study identified two independent association signals at 4q24 in relation to breast cancer risk and suggested that observed association in this locus may be mediated through the regulation of TET2.
Impact: Fine-mapping study with large sample size warranted for identification of independent loci for breast cancer risk
Measurement of the correlation between flow harmonics of different order in lead-lead collisions at √sNN = 2.76 TeV with the ATLAS detector
Correlations between the elliptic or triangular flow coefficients vm (m=2 or 3) and other flow harmonics vn (n=2 to 5) are measured using √sNN=2.76 TeV Pb+Pb collision data collected in 2010 by the ATLAS experiment at the LHC, corresponding to an integrated luminosity of 7 μb−1. The vm−vn correlations are measured in midrapidity as a function of centrality, and, for events within the same centrality interval, as a function of event ellipticity or triangularity defined in a forward rapidity region. For events within the same centrality interval, v3 is found to be anticorrelated with v2 and this anticorrelation is consistent with similar anticorrelations between the corresponding eccentricities, ε2 and ε3. However, it is observed that v4 increases strongly with v2, and v5 increases strongly with both v2 and v3. The trend and strength of the vm−vn correlations for n=4 and 5 are found to disagree with εm−εn correlations predicted by initial-geometry models. Instead, these correlations are found to be consistent with the combined effects of a linear contribution to vn and a nonlinear term that is a function of v22 or of v2v3, as predicted by hydrodynamic models. A simple two-component fit is used to separate these two contributions. The extracted linear and nonlinear contributions to v4 and v5 are found to be consistent with previously measured event-plane correlations
Search for W′→tb→qqbb decays in pp collisions at √s=8 TeV with the ATLAS detector
A search for a massive W′ gauge boson decaying to a top quark and a bottom quark is performed with the ATLAS detector in pp collisions at the LHC. The dataset was taken at a centre-of-mass energy of √s=8 TeV and corresponds to 20.3 fb−1 of integrated luminosity. This analysis is done in the hadronic decay mode of the top quark, where novel jet substructure techniques are used to identify jets from high-momentum top quarks. This allows for a search for high-mass W′ bosons in the range 1.5–3.0 TeV. b-tagging is used to identify jets originating from b-quarks. The data are consistent with Standard Model background-only expectations, and upper limits at 95 % confidence level are set on the W′→tb cross section times branching ratio ranging from 0.16pb to 0.33pb for left-handed W′ bosons, and ranging from 0.10pb to 0.21pb for W′ bosons with purely right-handed couplings. Upper limits at 95 % confidence level are set on the W′-boson coupling to tb as a function of the W′ mass using an effective field theory approach, which is independent of details of particular models predicting a W′boson
Search for vectorlike B quarks in events with one isolated lepton, missing transverse momentum, and jets at √s = 8 TeV with the ATLAS detector
A search has been performed for pair production of heavy vectorlike down-type (B) quarks. The analysis explores the lepton-plus-jets final state, characterized by events with one isolated charged lepton (electron or muon), significant missing transverse momentum, and multiple jets. One or more jets are required to be tagged as arising from b quarks, and at least one pair of jets must be tagged as arising from the hadronic decay of an electroweak boson. The analysis uses the full data sample of pp collisions recorded in 2012 by the ATLAS detector at the LHC, operating at a center-of-mass energy of 8 TeV, corresponding to an integrated luminosity of 20.3 fb −1 . No significant excess of events is observed above the expected background. Limits are set on vectorlike B production, as a function of the B branching ratios, assuming the allowable decay modes are B → Wt/Zb/Hb. In the chiral limit with a branching ratio of 100% for the decay B → Wt, the observed (expected) 95% C.L. lower limit on the vectorlike B mass is 810 GeV (760 GeV). In the case where the vectorlike B quark has branching ratio values corresponding to those of an SU(2) singlet state, the observed (expected) 95% C.L. lower limit on the vectorlike B mass is 640 GeV (505 GeV). The same analysis, when used to investigate pair production of a colored, charge 5/3 exotic fermion T 5/3 , with subsequent decay T 5/3 → Wt, sets an observed (expected) 95% C.L. lower limit on the T 5/3 mass of 840 GeV (780 GeV)
- …
