435 research outputs found
Thermostable Branched-Chain Amino Acid Transaminases From the Archaea Geoglobus acetivorans and Archaeoglobus fulgidus: Biochemical and Structural Characterization
This is the final version. Available on open access from Frontiers Media via the DOI in this recordTwo new thermophilic branched chain amino acid transaminases have been identified within the genomes of different hyper-thermophilic archaea, Geoglobus acetivorans, and Archaeoglobus fulgidus. These enzymes belong to the class IV of transaminases as defined by their structural fold. The enzymes have been cloned and over-expressed in Escherichia coli and the recombinant enzymes have been characterized both biochemically and structurally. Both enzymes showed high thermostability with optimal temperature for activity at 80 and 85°C, respectively. They retain good activity after exposure to 50% of the organic solvents, ethanol, methanol, DMSO and acetonitrile. The enzymes show a low activity to (R)-methylbenzylamine but no activity to (S)-methylbenzylamine. Both enzymes have been crystallized and their structures solved in the internal aldimine form, to 1.9 Å resolution for the Geoglobus enzyme and 2.0 Å for the Archaeoglobus enzyme. Also the Geoglobus enzyme structure has been determined in complex with the amino acceptor α-ketoglutarate and the Archaeoglobus enzyme in complex with the inhibitor gabaculine. These two complexes have helped to determine the conformation of the enzymes during enzymatic turnover and have increased understanding of their substrate specificity. A comparison has been made with another (R) selective class IV transaminase from the fungus Nectria haematococca which was previously studied in complex with gabaculine. The subtle structural differences between these enzymes has provided insight regarding their different substrate specificities.Biotechnology & Biological Sciences Research Council (BBSRC
Vitamin D-tour : cognition and depression: the role of vitamin D and its interplay with glucose homeostasis
According to recent estimations approximately 35.6 million people have dementia worldwide. Globally, 350 million people experience one or more depressive episodes during their life. As the therapeutic options for dementia and depression are limited, these conditions form a major challenge for public health and society. More and more researchers have initiated research on potential preventive factors for dementia and depression, including the potential effects of nutritional factors. The aim of this PhD-thesis was to study the role of vitamin D and its potential interplay with glucose homeostasis, in the development of cognitive decline and depression, using epidemiological data as well experimental animal data. Chapter 2 recapitulates a debate between vitamin D experts that was organized to make a step towards the harmonization on the formulation of optimal vitamin D intake levels and serum 25(OH)D concentrations across Europe. It was concluded that based on the current evidence-base 25(OH)D concentrations ≥50 nmol/L are sufficient with respect to optimal bone health. For health outcomes beyond bone health evidence was considered insufficient to formulate optimal levels. In order to achieve and maintain a 25(OH)D concentration ≥50 nmol/L, older adults aged ≥65 years were recommended to adhere to a vitamin D intake of 20 μg/day. Chapter 3 shows that there is a high prevalence of 25(OH)D inadequacy in a population of Dutch older adults that participated in the B-PROOF study (n=2857), namely 45% had 25(OH)D concentrations In chapter 4 the associations between 25(OH)D status and global cognitive performance (n=116), depressive symptoms (n=118), and surrogate markers of glucose intolerance (n=593) were evaluated using data of European adults aged 70-75 years. None of the associations reached significance. Studying the potential role of vitamin D in domain-specific cognitive performance and depression in 127 Dutch pre-frail and frail older adults aged ≥65 years (chapter 5), showed an association between 25(OH)D concentration and executive functioning, and a tendency towards an association with information processing speed. Stratification for ‘low’ and ‘high’ fasting glucose concentrations did not suggest an interaction between vitamin D and glucose homeostasis in the association with domain-specific cognitive performance. Moreover, adding fasting glucose or insulin did not substantially influence the associations between 25(OH)D status and domain-specific cognitive performance, and hence a mediation effect of glucose homeostasis was considered unlikely. We furthermore observed associations of 25(OH)D status with attention and working memory (n=787) (chapter 6), depression (n=2839) (chapter 7) and grey matter volume of the brain (n=217) (chapter 8) in a population community-dwelling Dutch older adults aged ≥65 years. Again, these studies did not provide evidence that the associations were modified or mediated by glucose intolerance. However, it should be emphasized that glucose intolerance in these three chapters was defined sub-optimally, specifically using blood samples that may have been collected in a non-fasting state, or by using self-reported diabetes data. Hence, the mediation and interaction effects should be interpreted cautiously. Finally, chapter 9 shows the results of a proof of principle study on the effect of a long-term vitamin D deficiency on cognitive decline and emotional reactivity in old C57BL/6j mice. Modest tendencies were shown for a relation between vitamin D and spatial learning, but these tendencies did not reach significance. Vitamin D deficiency did not affect recognition memory, spatial memory or emotional reactivity. Mice that received a higher dietary fat load, which was given to induce an impaired glucose tolerance, did not respond differently to a vitamin D deficiency than mice that received a low fat diet did. Overall, it is concluded that the evidence for an effect of vitamin D on cognitive performance/decline, depression or brain volume is insufficient to formulate disease specific cut-off values for vitamin D intake or 25(OH)D status. However, given the high prevalence of 25(OH)D concentrations <50 nmol/L we do call for a more active promotion of the current vitamin D intake recommendations.</p
Differential Glucose-Regulation of MicroRNAs in Pancreatic Islets of Non-Obese Type 2 Diabetes Model Goto-Kakizaki Rat
The Goto-Kakizaki (GK) rat is a well-studied non-obese spontaneous type 2 diabetes (T2D) animal model characterized by impaired glucose-stimulated insulin secretion (GSIS) in the pancreatic beta cells. MicroRNAs (miRNAs) are short regulatory RNAs involved in many fundamental biological processes. We aim to identify miRNAs that are differentially-expressed in the pancreatic islets of the GK rats and investigate both their short- and long term glucose-dependence during glucose-stimulatory conditions
Feasibility of intensity-modulated and image-guided radiotherapy for locally advanced esophageal cancer
BACKGROUND:In this study the feasibility of intensity-modulated radiotherapy (IMRT) and tomotherapy-based image-guided radiotherapy (IGRT) for locally advanced esophageal cancer was assessed.METHODS:A retrospective study of ten patients with locally advanced esophageal cancer who underwent concurrent chemotherapy with IMRT (1) and IGRT (9) was conducted. The gross tumor volume was treated to a median dose of 70Gy (62.4-75Gy).RESULTS:At a median follow-up of 14months (1-39 months), three patients developed local failures, six patients developed distant metastases, and complications occurred in two patients (1 tracheoesophageal fistula, 1 esophageal stricture requiring repeated dilatations). No patients developed grade 3-4 pneumonitis or cardiac complications.CONCLUSIONS:IMRT and IGRT may be effective for the treatment of locally advanced esophageal cancer with acceptable complications.This item is part of the UA Faculty Publications collection. For more information this item or other items in the UA Campus Repository, contact the University of Arizona Libraries at [email protected]
Assessment of Metabolic Phenotypes in Patients with Non-ischemic Dilated Cardiomyopathy Undergoing Cardiac Resynchronization Therapy
Studies of myocardial metabolism have reported that contractile performance at a given myocardial oxygen consumption (MVO2) can be lower when the heart is oxidizing fatty acids rather than glucose or lactate. The objective of this study is to assess the prognostic value of myocardial metabolic phenotypes in identifying non-responders among non-ischemic dilated cardiomyopathy (NIDCM) patients undergoing cardiac resynchronization therapy (CRT). Arterial and coronary sinus plasma concentrations of oxygen, glucose, lactate, pyruvate, free fatty acids (FFA), and 22 amino acids were obtained from 19 male and 2 female patients (mean age 56 ± 16) with NIDCM undergoing CRT. Metabolite fluxes/MVO2 and extraction fractions were calculated. Flux balance analysis (FBA) was performed with MetaFluxNet 1.8 on a metabolic network of the cardiac mitochondria (189 reactions, 230 metabolites) reconstructed from mitochondrial proteomic data (615 proteins) from human heart tissue. Non-responders based on left ventricular ejection fraction (LVEF) demonstrated a greater mean FFA extraction fraction (35% ± 17%) than responders [18 ± 10%, p = 0.0098, area under the estimated ROC curve (AUC) was 0.8238, S.E. 0.1115]. Calculated adenosine triphosphate (ATP)/MVO2 using FBA correlated with change in New York Heart Association (NYHA) class (rho = 0.63, p = 0.0298; AUC = 0.8381, S.E. 0.1316). Non-responders based on both LVEF and NYHA demonstrated a greater mean FFA uptake/MVO2 (0.115 ± 0.112) than responders (0.034 ± 0.030, p = 0.0171; AUC = 0.8593, S.E. 0.0965). Myocardial FFA flux and calculated maximal ATP synthesis flux using FBA may be helpful as biomarkers in identifying non-responders among NIDCM patients undergoing CRT
Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector
Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente
AP2α controls the dynamic balance between miR-126&126∗ and miR-221&222 during melanoma progression
Accumulating evidences have shown the association between aberrantly expressed microRNAs (miRs) and cancer, where these small regulatory RNAs appear to dictate the cell fate by regulating all the main biological processes. We demonstrated the responsibility of the circuitry connecting the oncomiR-221&222 with the tumor suppressors miR-126&126∗ in melanoma development and progression. According to the inverse correlation between endogenous miR-221&222 and miR-126&126∗, respectively increasing or decreasing with malignancy, their enforced expression or silencing was sufficient for a reciprocal regulation. In line with the opposite roles of these miRs, protein analyses confirmed the reverse expression pattern of miR-126&126∗-targeted genes that were induced by miR-221&222. Looking for a central player in this complex network, we revealed the dual regulation of AP2α, on one side directly targeted by miR-221&222 and on the other a transcriptional activator of miR-126&126∗. We showed the chance of restoring miR-126&126∗ expression in metastatic melanoma to reduce the amount of mature intracellular heparin-binding EGF like growth factor, thus preventing promyelocytic leukemia zinc finger delocalization and maintaining its repression on miR-221&222 promoter. Thus, the low-residual quantity of these two miRs assures the release of AP2α expression, which in turn binds to and induces miR-126&126∗ transcription. All together these results point to an unbalanced ratio functional to melanoma malignancy between these two couples of miRs. During progression this balance gradually moves from miR-126&126∗ toward miR-221&222. This circuitry, besides confirming the central role of AP2α in orchestrating melanoma development and/or progression, further displays the significance of these miRs in cancer and the option of utilizing them for novel therapeutics
Effects of Protein Deficiency on Perinatal and Postnatal Health Outcomes
There are a variety of environmental insults that can occur during pregnancy which cause low birth weight and poor fetal health outcomes. One such insult is maternal malnutrition, which can be further narrowed down to a low protein diet during gestation. Studies show that perinatal protein deficiencies can impair proper organ growth and development, leading to long-term metabolic dysfunction. Understanding the molecular mechanisms that underlie how this deficiency leads to adverse developmental outcomes is essential for establishing better therapeuticstrategies that may alleviate or prevent diseases in later life. This chapter reviews how perinatal protein restriction in humans and animals leads to metabolic disease, and it identifies the mechanisms that have been elucidated, to date. These include alterations in transcriptional and epigenetic mechanisms, as well as indirect means such as endoplasmic reticulum (ER) stress and oxidative stress. Furthermore, nutritional and pharmaceutical interventions are highlighted to illustrate that the plasticity of the underdeveloped organs during perinatal life can be exploited to prevent onset of long-term metabolic disease
Analysis of miRNA and mRNA Expression Profiles Highlights Alterations in Ionizing Radiation Response of Human Lymphocytes under Modeled Microgravity
BACKGROUND: Ionizing radiation (IR) can be extremely harmful for human cells since an improper DNA-damage response (DDR) to IR can contribute to carcinogenesis initiation. Perturbations in DDR pathway can originate from alteration in the functionality of the microRNA-mediated gene regulation, being microRNAs (miRNAs) small noncoding RNA that act as post-transcriptional regulators of gene expression. In this study we gained insight into the role of miRNAs in the regulation of DDR to IR under microgravity, a condition of weightlessness experienced by astronauts during space missions, which could have a synergistic action on cells, increasing the risk of radiation exposure.
METHODOLOGY/PRINCIPAL FINDINGS: We analyzed miRNA expression profile of human peripheral blood lymphocytes (PBL) incubated for 4 and 24 h in normal gravity (1 g) and in modeled microgravity (MMG) during the repair time after irradiation with 0.2 and 2Gy of \u3b3-rays. Our results show that MMG alters miRNA expression signature of irradiated PBL by decreasing the number of radio-responsive miRNAs. Moreover, let-7i*, miR-7, miR-7-1*, miR-27a, miR-144, miR-200a, miR-598, miR-650 are deregulated by the combined action of radiation and MMG. Integrated analyses of miRNA and mRNA expression profiles, carried out on PBL of the same donors, identified significant miRNA-mRNA anti-correlations of DDR pathway. Gene Ontology analysis reports that the biological category of "Response to DNA damage" is enriched when PBL are incubated in 1 g but not in MMG. Moreover, some anti-correlated genes of p53-pathway show a different expression level between 1 g and MMG. Functional validation assays using luciferase reporter constructs confirmed miRNA-mRNA interactions derived from target prediction analyses.
CONCLUSIONS/SIGNIFICANCE: On the whole, by integrating the transcriptome and microRNome, we provide evidence that modeled microgravity can affects the DNA-damage response to IR in human PBL
- …