245 research outputs found

    Magnetodielectric coupling and multi-blocking effect in the Ising-chain magnet Sr2Ca2CoMn2O9

    Full text link
    We have demonstrated magnetodielectric (MD) coupling in an Ising-chain magnet Sr2Ca2CoMn2O9, via detailed investigation of ac susceptibility and dielectric constant as a function of temperature, magnetic field and frequency. Sr2Ca2CoMn2O9 consists of spin-chains, made of the regular stacking of one CoO6 trigonal prism with two MnO6 octahedra. The (Co2+ Mn4+ Mn4+) unit stabilizes a (up-down-up) spin-state along the chains which are distributed on a triangular lattice. This compound undergoes a partially disordered antiferromagnetic transition at TN ~ 28 K. The dielectric constant exhibits a clear peak at TN only in presence of an external magnetic field (above 5 kOe), evidencing the presence of MD coupling, which is further confirmed by field-dependent dielectric measurements. We argue that spatial inversion symmetry can be broken as a result of exchange-striction along each spin chain, inducing uncompensated local dipoles. At low temperatures, a dipolar relaxation phenomenon is observed, bearing strong similarities with the blocking effect typical of the spin dynamics in this compound. Such a spin-dipole relationship is referred to as a multi-blocking effect, in relation with the concept of magnetodielectric multiglass previously introduced for related materials.Comment: Multiferroicity, Magnetoelectric coupling, Complex exchange interaction, spin-chain oxid

    Modified Newton's law, braneworlds, and the gravitational quantum well

    Full text link
    Most of the theories involving extra dimensions assume that only the gravitational interaction can propagate in them. In such approaches, called brane world models, the effective, 4-dimensional, Newton's law is modified at short as well as at large distances. Usually, the deformation of Newton's law at large distances is parametrized by a Yukawa potential, which arises mainly from theories with compactified extra dimensions. In many other models however, the extra dimensions are infinite. These approaches lead to a large distance power-law deformation of the gravitational newtonian potential VN(r)V_N(r), namely V(r)=(1+kb/rb)VN(r)V(r)=(1+k_b/r^b)V_N(r), which is less studied in the literature. We investigate here the dynamics of a particle in a gravitational quantum well with such a power-law deformation. The effects of the deformation on the energy spectrum are discussed. We also compare our modified spectrum to the results obtained with the GRANIT experiment, where the effects of the Earth's gravitational field on quantum states of ultra cold neutrons moving above a mirror are studied. This comparison leads to upper bounds on bb and kbk_b.Comment: 11 pages, 1 figur

    Challenges in the construction of a multi-product vaccine facility

    Get PDF
    A new multi-product vaccines facility in Sanofi Pasteur was designed and equipped with new state-of-the-art technologies. The construction of this building aims to increase capacity of producing pediatric vaccines and allowed to implement manufacturing process improvements, increase quality compliance level and addressed environmental, and safety concern. This new facility harbors three antigens processes from fermentation to purification and detoxification. The project has been challenging on different points: new equipment, process transfer issues, new qualification/validation strategy and regulatory registration. Apart from global feedbacks on costs, organization, resources, performance and authorities communication strategies, focus was also directed towards the resolution of a process issue during validation steps. A trouble- shooting group has been mobilized to work on the different axes with a specific method. Resolution of all the issues permitted the building registration, and therefore the vaccination of millions of children

    French Roadmap for complex Systems 2008-2009

    Get PDF
    This second issue of the French Complex Systems Roadmap is the outcome of the Entretiens de Cargese 2008, an interdisciplinary brainstorming session organized over one week in 2008, jointly by RNSC, ISC-PIF and IXXI. It capitalizes on the first roadmap and gathers contributions of more than 70 scientists from major French institutions. The aim of this roadmap is to foster the coordination of the complex systems community on focused topics and questions, as well as to present contributions and challenges in the complex systems sciences and complexity science to the public, political and industrial spheres

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century
    corecore