61 research outputs found

    Search for the standard model Higgs boson at LEP

    Get PDF

    The Great American Biotic Interchange: Dispersals, Tectonics, Climate, Sea Level and Holding Pens

    Get PDF
    The biotic and geologic dynamics of the Great American Biotic Interchange are reviewed and revised. Information on the Marine Isotope Stage chronology, sea level changes as well as Pliocene and Pleistocene vegetation changes in Central and northern South America add to a discussion of the role of climate in facilitating trans-isthmian exchanges. Trans-isthmian land mammal exchanges during the Pleistocene glacial intervals appear to have been promoted by the development of diverse non-tropical ecologies

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Adaptive diversity of incisor enamel microstructure in South American burrowing rodents (family Ctenomyidae, Caviomorpha)

    Get PDF
    The aim of this study was to analyse the morphofunctional and adaptive significance of variation in the upper incisor enamel microstructure of South American burrowing ctenomyids and other octodontoid taxa. We studied the specialized subterranean tooth-digger †Eucelophorus chapalmalensis (Pliocene – Middle Pleistocene), and compared it with other fossil and living ctenomyids with disparate digging adaptations, two fossorial octodontids and one arboreal echimyid. Morphofunctionally significant enamel traits were quite similar among the species studied despite their marked differences in habits, digging behaviour and substrates occupied, suggesting a possible phylogenetic constraint for the Octodontoidea. In this context of relative similarity, the inclination of Hunter–Schreger bands, relative thickness of external index (EI) and prismless enamel zone were highest in †Eucelophorus, in agreement with its outstanding craniomandibular tooth-digging specialization. Higher inclination of Hunter–Schreger bands reinforces enamel to withstand high tension forces, while high external index provides greater resistance to wear. Results suggest increased frequency of incisor use for digging in †Eucelophorus, which could be related to a more extreme tooth-digging strategy and/or occupancy of hard soils. Higher external index values as recurring patterns in distant clades of tooth-digging rodents support an adaptive significance of this enamel trait
    corecore