796 research outputs found

    Assessment of table olives' organoleptic defect intensities based on the potentiometric fingerprint recorded by an electronic tongue

    Get PDF
    Table olives are prone to the appearance of sensory defects that decrease their quality and in some cases result in olives unsuitable for consumption. The evaluation of the type and intensity of the sensory negative attributes of table olives is recommended by the International Olive Council, although not being legally required for commercialization. However, the accomplishment of this task requires the training and implementation of sensory panels according to strict directives, turning out in a time-consuming and expensive procedure that involves a degree of subjectivity. In this work, an electronic tongue is proposed as a taste sensor device for evaluating the intensity of sensory defects of table olives. The potentiometric signal profiles gathered allowed establishing multiple linear regression models, based on the most informative subsets of signals (from 24 to 29 recorded during the analysis of olive aqueous pastes and brine solutions) selected using a simulated annealing meta-heuristic algorithm. The models enabled the prediction of the median intensities (R2 ≄ 0.942 and RMSE ≀ 0.356, for leave-one-out or repeated K-fold cross-validation procedures) of butyric, musty, putrid, winey-vinegary, and zapateria negative sensations being, in general, the predicted intensities within the range of intensities perceived by the sensory panel. Indeed, based on the predicted mean intensities of the sensory defects, the electrochemical-chemometric approach developed could correctly classify 86.4% of the table olive samples according to their trade category based on a sensory panel evaluation and following the International Olive Council regulations (i.e., extra, 1st choice, 2nd choice, and olives that may not be sold as table olives). So, the satisfactory overall predictions achieved demonstrate that the electronic tongue could be a complementary tool for assessing table olive defects, reducing the effort of trained panelists and minimizing the risk of subjective evaluations.This work was financially supported by Project POCI-01-0145-FEDER-006984—Associate Laboratory LSRE-LCM, by Project UID/QUI/00616/2013 —CQ-VR, and UID/AGR/00690/ 2013—CIMO, all funded by Fundo Europeu de Desenvolvimento Regional (FEDER) through COMPETE2020—Programa Operacional Competitividade e Internacionalização (POCI) and by national funds through Fundação para a CiĂȘncia e a Tecnologia (FCT), Portugal. Strategic funding of UID/BIO/04469/2013 unit is also acknowledged. Nuno Rodrigues thanks FCT, POPH-QREN, and FSE for the Ph.D. Grant (SFRH/BD/104038/2014).info:eu-repo/semantics/publishedVersio

    Evaluation of extra-virgin olive oils shelf life using an electronic tongue-chemometric approach

    Get PDF
    Physicochemical quality parameters, olfactory and gustatoryretronasal positive sensations of extra-virgin olive oils vary during storage leading to a decrease in the overall quality. Olive oil quality decline may prevent the compliance of olive oil quality with labeling and significantly reduce shelf life, resulting in important economic losses and negatively condition the consumer confidence. The feasibility of applying an electronic tongue to assess olive oils usual commercial light storage conditions and storage time was evaluated and compared with the discrimination potential of physicochemical or positive olfactory/gustatory sensorial parameters. Linear discriminant models, based on subsets of 58 electronic tongue sensor signals, selected by the meta-heuristic simulated annealing variable selection algorithm, allowed the correct classification of olive oils according to the light exposition conditions and/or storage time (sensitivities and specificities for leave-one-out cross-validation: 8296 %). The predictive performance of the E-tongue approach was further evaluated using an external independent dataset selected using the KennardStone algorithm and, in general, better classification rates (sensitivities and specificities for external dataset: 67100 %) were obtained compared to those achieved using physicochemical or sensorial data. So, the work carried out is a proof-of-principle that the proposed electrochemical device could be a practical and versatile tool for, in a single and fast electrochemical assay, successfully discriminate olive oils with different storage times and/or exposed to different light conditions.The authors acknowledge the financial support from the strategic funding of UID/BIO/04469/2013 unit, from Project POCI-01-0145-FEDER-006984—Associate Laboratory LSRELCM funded by FEDER funds through COMPETE2020—Programa Operacional Competitividade e Internacionalização (POCI)—and by national funds through FCT—Fundação para a CiĂȘncia e a Tecnologia and under the strategic funding of UID/BIO/04469/2013 unit. Nuno Rodrigues thanks FCT, POPH-QREN and FSE for the Ph.D. Grant (SFRH/BD/104038/2014).info:eu-repo/semantics/publishedVersio

    Polimiosite : investigação clínica em duas irmãs

    Get PDF
    We present an investigation of a case of polymyositis affecting two sisters of one same parenthood. Their cases have been documented for almost two decades, being investigated by means of a diagnostic protocol which combined clinical findings as well as laboratorial, histopathological and image tests. In both cases, clinical manifestations started in childhood, without signs of involvement of the central and peripheral nervous system. Both patients proved to respond to a therapeutics based on corticosteroids. The degree of relatedness between their parents corroborate the notion that genetic factors may contribute to the development of the disease. ___________________________________________________________________________________________________ RESUMOApresentamos a investigação de dois casos de polimiosite, ocorridos entre irmĂŁs de uma mesma filiação. Seus casos foram documentados ao longo de quase duas dĂ©cadas, tendo sido diagnosticados utilizando- se de protocolo diagnĂłstico que combinou achados clĂ­nicos, exames laboratoriais, histopatolĂłgicos e por imagem. Em ambos os casos, as manifestaçÔes clĂ­nicas se iniciaram ainda na infĂąncia, sendo constatada ausĂȘncia de acometimento do sistema nervoso central ou perifĂ©rico. Ambas as pacientes responderam satisfatoriamente a terapia baseada em corticosterĂłide. O grau de parentesco entre os genitores das pacientes sugere que fatores genĂ©ticos podem predispor ao desenvolvimento da doença

    Monovarietal extra-virgin olive oil classification: a fusion of human sensory attributes and an electronic tongue

    Get PDF
    Olive oil quality grading is traditionally assessed by human sensory evaluation of positive and negative attributes (olfactory, gustatory, and final olfactorygustatory sensations). However, it is not guaranteed that trained panelist can correctly classify monovarietal extra-virgin olive oils according to olive cultivar. In this work, the potential application of human (sensory panelists) and artificial (electronic tongue) sensory evaluation of olive oils was studied aiming to discriminate eight single-cultivar extra-virgin olive oils. Linear discriminant, partial least square discriminant, and sparse partial least square discriminant analyses were evaluated. The best predictive classification was obtained using linear discriminant analysis with simulated annealing selection algorithm. A low-level data fusion approach (18 electronic tongue signals and nine sensory attributes) enabled 100 % leave-one-out cross-validation correct classification, improving the discrimination capability of the individual use of sensor profiles or sensory attributes (70 and 57 % leave-one-out correct classifications, respectively). So, human sensory evaluation and electronic tongue analysis may be used as complementary tools allowing successful monovarietal olive oil discrimination.This work was co-financed by FCT/MEC and FEDER under Program PT2020 (Project UID/EQU/50020/2013); by Fundacao para a Ciencia e Tecnologia under the strategic funding of UID/BIO/04469/2013 unit; and by Project POCTEP through Project RED/AGROTEC-Experimentation network and transfer for development of agricultural and agro industrial sectors between Spain and Portugal

    Application of an electronic tongue for Tunisian olive oils' classification according to olive cultivar or physicochemical parameters

    Get PDF
    Olive oil commercialization has a great impact on the economy of several countries, namely Tunisia, being prone to frauds. Therefore, it is important to establish analytical techniques to ensure labeling correctness concerning olive oil quality and olive cultivar. Traditional analytical techniques are quite expensive, time consuming and hardly applied in situ, considering the harsh environments of the olive industry. In this work, the feasibility of applying a potentiometric electronic tongue with cross-sensitivity lipid membranes to discriminate Tunisian olive oils according to their quality level (i.e., extra virgin, virgin or lampante olive oils) or autochthonous olive cultivar (i.e., cv ChĂ©toui and cv Shali) was evaluated for the first time. Linear discrimination analysis coupled with the simulated annealing variable selection algorithm showed that the signal profiles of olive oils hydroethanolic extracts allowed olive oils discrimination according to physicochemical quality level (classification model based on 25 signals enabling 84 ± 9% correct classifications for repeated K-fold cross-validation), and olive cultivar (classification model based on 20 signals with an average sensitivity of 94 ± 6% for repeated K-fold cross-validation), regardless of the geographical origin and olive variety or the olive quality, respectively. The results confirmed, for the first time, the potential discrimination of the electronic tongue, attributed to the observed quantitative response (sensitivities ranging from 66.6 to +57.7 mV/decade) of the E-tongue multi-sensors towards standard solutions of polar compounds (aldehydes, esters and alcohols) usually found in olive oils and that are related to their sensory positive attributes like green and fruity.This work was financially supported by Project POCI-01–0145-FEDER-006984–Associate Laboratory LSRE-LCM and by Project UID/QUI/00616/2013–CQ-VR both funded by FEDER—Fundo Europeu de Desenvolvimento Regional through COMPETE2020-Programa Operacional Competitividade e Internacionalização (POCI)—and by national funds through FCTFundação para a CiĂȘncia e a Tecnologia, Portugal. Strategic funding of UID/BIO/04469/2013 unit is also acknowledged. Nuno Rodrigues thanks FCT, POPH-QREN and FSE for the Ph.D. Grant (SFRH/ BD/104038/2014).info:eu-repo/semantics/publishedVersio

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≄20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≀pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≀{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente
    • 

    corecore