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sensory attributes) enabled 100 % leave-one-out cross-val-
idation correct classification, improving the discrimination 
capability of the individual use of sensor profiles or sensory 
attributes (70 and 57  % leave-one-out correct classifica-
tions, respectively). So, human sensory evaluation and elec-
tronic tongue analysis may be used as complementary tools 
allowing successful monovarietal olive oil discrimination.

Keywords  Single-cultivar extra-virgin olive oil · Sensory 
analysis · Potentiometric electronic tongue · Linear 
multivariate methods · Simulated annealing algorithm

Introduction

There is an increasing need for developing appropriate 
methodologies for guaranteeing olive oil commercial cate-
gory (extra virgin, EVOO; virgin, VOO; and lampante olive 
oils, LOO), as well as for identifying geographical or olive 
cultivar origin [1–3]. Olive oil organoleptic attributes [1, 
4–6] and physicochemical parameters [7, 8] are important 
for olive oil quality assessment and discrimination, avoid-
ing the indiscriminate use of uncorrected definitions in 
olive oil labels [1]. These analysis are time-consuming and 
costly, requiring trained sensory panelists and high-skilled 
technicians, respectively. Moreover, sensory evaluation is 
mainly used to classify olive oils as LOO, VOO, or EVOO 
according to their positive and/or negative organoleptic 
sensations. In the last years, several analytical approaches, 
ranging from expensive chromatographic [2, 6, 9–13]-, 
DNA [14]-, or nondestructive spectroscopy [15, 16]-based 
methods to fast and low-cost electrochemical devices [3, 
13, 17–19], have been reported. These methods showed sat-
isfactory predictive performances regarding olive oil qual-
ity assessment and classification, including the successful 

Abstract  Olive oil quality grading is traditionally 
assessed by human sensory evaluation of positive and nega-
tive attributes (olfactory, gustatory, and final olfactory–
gustatory sensations). However, it is not guaranteed that 
trained panelist can correctly classify monovarietal extra-
virgin olive oils according to olive cultivar. In this work, 
the potential application of human (sensory panelists) and 
artificial (electronic tongue) sensory evaluation of olive oils 
was studied aiming to discriminate eight single-cultivar 
extra-virgin olive oils. Linear discriminant, partial least 
square discriminant, and sparse partial least square discri-
minant analyses were evaluated. The best predictive clas-
sification was obtained using linear discriminant analysis 
with simulated annealing selection algorithm. A low-level 
data fusion approach (18 electronic tongue signals and nine 
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discrimination of EVOO, VOO, and LOO; the identifica-
tion of monovarietal EVOO and their geographical origin 
as well as the identification of potential putative markers 
for the recognition of olive oil adulteration [2]. Less atten-
tion has been given to the possibility of using sensory data 
for classifying monovarietal EVOO according to its olive 
cultivar. In a previous work, Dias et al. [3] showed that an 
electronic tongue (E-tongue) could be employed to dis-
criminate three Portuguese or three Spanish monovarietal 
EVOOs, from two crop years, according to olive cultivar 
(100  % and 98  % of correct classifications, respectively). 
However, when the six single-cultivar EVOOs were evalu-
ated simultaneously, the correct classification percentage 
dramatically decreased to 43 %. This drawback only over-
come when EVOO samples were split by production year, 
which enabled to reduce data variability within each year 
group, allowing to increase the correct classification rate of 
nine single-cultivar EVOOs to 93–95 % [20].

On the other hand, some research works aiming for 
the improvement of olive oil quality assessment and clas-
sification according to olive cultivar or geographical ori-
gin reported the successful use of data fusion approaches, 
which merged data from different instrumental analytical 
methods, such as headspace mass spectrometry (electronic 
nose), ultraviolet–visible and near-infrared spectroscopy 
[21]; near- and mid-infrared spectroscopy [1, 22]; ultravio-
let–visible, near- and mid-infrared spectroscopy together 
with fatty acid composition profile from gas chromatog-
raphy analysis [23]; electronic nose and tongue [19]; and 
visible spectroscopic fingerprints and chemical descrip-
tors [24]. Indeed, data fusion enabled to obtain compatible 
measurements originated from different sources [25]. Data 
fusion approaches, with different abstraction levels (low, 
mid, or high level), were effectively applied to differenti-
ate or classify different food matrices or their attributes, 
namely beers [25, 26], snack foods [27], fruit juices [28], 
and black teas [29].

In this work and for the first time, the feasibility of a 
low-level data fusion approach, combining E-tongue poten-
tiometric signals and olfactory and/or gustatory sensations, 

was studied aiming to improve the discrimination of high-
value monovarietal EVOO according to olive cultivar. Signal 
profiles were recorded using an E-tongue, with cross-sensi-
tivity nonspecific lipid membranes as previously described 
[3]. The single-cultivar EVOO organoleptic profiles were 
evaluated by four trained sensory panelists. Eight Spanish 
monovarietal EVOOs were used (cvs. Arbosana, Arroniz, 
Cornicabra, Frantoio, Manzanilla, Redondilla, Royuela, and 
Zorzal). Four supervised linear multivariate models were 
tested to establish EVOO classification according to olive 
cultivar based on the independent variables, potentiometric 
sensor signals, and/or sensory descriptors. As previously 
reported [3], hydroethanolic extracts of EVOO, potentially 
rich in polar compounds that may be correlated with bitter-
ness, astringency, and pungency attributes, were analyzed 
to overcome the difficulty of carrying out electrochemical 
assays in viscous non-conductive liquids [30]. In summary, 
this work aimed to demonstrate the complementary capabil-
ities of human and artificial sensory analysis.

Materials and methods

Olive oil samples

Eight monovarietal Spanish EVOOs (cv. Arbosana 
(ARBO), cv. Arroniz (ARR), cv. Cornicabra (COR), cv. 
Frantoio (FRA), cv. Manzanilla (MAN), cv. Redondilla 
(RED), cv. Royuela (ROY), and cv. Zorzal (ZOR)), pro-
duced at the north of Spain (Valladolid region), were stud-
ied. These traditional olive varieties were selected due to 
their recognized high-quality, peculiar, and differentiated 
organoleptic characteristics. Moreover, the capability of 
discriminating these EVOOs has became quite relevant 
since some of these olive cultivars are usually produced in 
intensive olive groves (e.g., ARBO and FRA) and so can-
not be used to obtain Protected Denomination of Origin 
olive oils. In total, 22 different single-cultivar EVOOs were 
obtained directly from olive oil certified producers during 
2012 and 2013 (Table 1). For each one of the EVOOs, two 

Table 1   Sample details of the 
Spanish monovarietal EVOO 
obtained in Valladolid region

Varietal (cvs.) Number of EVOOs Number of samples (bottles from  
different production lots)

Production year(s)

Arbosana (ARBO) 4 8 2012 and 2013

Arroniz (ARR) 2 4 2012

Cornicabra (COR) 4 8 2012 and 2013

Frantoio (FRA) 4 8 2012 and 2013

Manzanilla (MAN) 2 4 2012

Redondilla (RED) 2 4 2012

Royuela (ROY) 2 4 2013

Zorzal (ZOR) 2 4 2013
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bottles of different production lots were analyzed, totaling 
44 independent olive oil samples. Olive oils were packed 
and stored in dark at −20 °C for a 24-h period after their 
production in olive mills with a two-phase extraction pro-
cess and kept in those conditions until further analysis [3].

Sensory analysis

Olive oil samples were subjected to organoleptic assess-
ment following the methods and standards adopted by 
the International Olive Council (IOC or COI) for sensory 
analysis of olive oils, namely COI/T.20/Doc. No. 15/Rev. 
6 [31] and COI/T.30/Doc. No. 17 [32]. Each sample was 
subjected to the judgment of four trained panel members 
who classify the samples in a scale according to olfac-
tory sensations, gustatory–retronasal sensations, and final 
olfactory–gustatory sensations. For olfactory sensations, 
the following attributes were measured: olive fruitiness 
(0–7); other fruits (0–3); green (grass/leaves) (0–2); other 
positive sensations (0–3); and harmony (0–20). Concerning 
gustatory–retronasal sensations were evaluated the olive 
fruitiness (0–10); sweet (0–4); bitter (0–3); pungent (0–3); 
green (grass/leaves) (0–2); other positive sensations (0–3); 
and harmony (0–20). A final olfactory–gustatory sensation 
for each sample was also  considered, conjugating all the 
organoleptic sensations, pointing out the complexity (0–10) 
and persistence (0–10). It should be remarked that harmony 
increases when the attributes are balanced, and complexity 
increases with the number and intensity of aromas and fla-
vors. Although COI guidelines recommend the use of 8–12 
tasters for each analysis, it was decided to use only four 
trained panelists (three from Portugal and one from Spain), 
which are quite familiar with the classification of positive 
and negative olive oil organoleptic attributes and usually 
are jury members in olive oil classification in competitions. 
With this approach, it was intended to guarantee a more 
consistent sensory classification.

Sample preparation and E‑tongue analysis

All samples were electrochemically analyzed in the same 
day, which turned out in different storage times, namely 
1  year or less. The olive oil extraction procedure, using 
hydroethanolic solutions (H2O:EtOH, 80:20 v/v), was pre-
viously reported by Dias et al. [3]. One independent sam-
ple was collected and extracted from each bottle of each 
monovarietal EVOO and analyzed in duplicate (totalizing 
22 olive oils, 44 bottles, and 88 analyses). The E-tongue 
included two print-screen potentiometric devices, con-
taining different cross-sensitivity membranes as chemi-
cal sensors [3]: four lipidic additives (octadecylamine, 
oleyl alcohol, methyltrioctylammonium chloride, and 
oleic acid from Fluka; corresponding to approximately 

3  %), five plasticizers (bis(1-butylpentyl) adipate, dibutyl 
sebacate, 2-nitrophenyl-octylether, tris(2-ethylhexyl)phos-
phate, and dioctyl phenylphosphonate from Fluka; repre-
senting around 65  %) and high molecular weight polyvi-
nyl chloride (PVC); near 32  %). The type of sensors and 
polymeric membrane compositions (relative percentage 
of additive, plasticizer, and PVC) were selected based on 
a previous work [33] taking into account their satisfactory 
signal stability over time (%RSD < 5 %) and repeatability 
(0.5  %  <    %RSD  <  15  %) for basic standard taste com-
pounds (e.g., sweet, acid, bitter, salty, and umami). Further 
details about each sensor are described by Sousa et al. [34]. 
Also, lipid polymeric membranes were used since they 
may interact with tastant substances through electrostatic 
or hydrophobic interactions [35]. Each sensor was identi-
fied with a code with a letter S (for sensor) followed by the 
number of the array (1 or 2) and the number of the mem-
brane (1–20, corresponding to different combinations of 
plasticizer and additive used).

Data fusion

Three data fusion approaches are usually applied. The 
main differences rely on the abstraction levels, i.e., the way 
how data originated from several analytical techniques or 
different sources, can be merged, and form a consistent 
concatenated data matrix. In low-level of abstraction data 
fusion, the data from all sources are simply concatenated 
before model development, resulting in a data matrix with 
a dimension of number of samples × total number of vari-
ables from all sources. This approach may improve model 
classification performance namely multisensor data fusion 
[19]. In mid-level fusion, a feature extraction is applied to 
each data source followed by merging the extracted fea-
tures. For high level of abstraction, data from each source 
are initially analyzed, and a model is derived, separately, 
from each data source, being the model classification out-
puts then merged [26, 28, 36]. In this work, a low-level data 
fusion was adopted.

Statistical analysis

Different chemometric methods were applied. First, sen-
sory data were subjected to an analysis of variance (two-
way ANOVA) to infer about the existence of a significant 
effect of production year or olive cultivar. If a significant 
effect was found, the Tukey’s post hoc multiple comparison 
test was further employed.

Four linear multivariate methods were explored to estab-
lish monovarietal EVOO classification models using inde-
pendent predictors among the E-tongue potentiometric 
signals recorded and/or the sensory attributes assessed by 
the trained panelists, namely linear discriminant analysis 
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(LDA) and partial least squares discriminant analysis (PLS-
DA), as the most common linear techniques applied in clas-
sification studies; sparse partial least squares discriminant 
analysis (SPLS-DA), as a PLS improved methodology, 
which allows to obtain a simplified PLS model by applying 
a feature variable selection; and finally, a LDA approach 
coupled with meta-heuristic simulated annealing algorithm 
(LDA-SA), which uses a variable selection step.

The LDA is a supervised technique used as a starting 
point in classification studies since the model obtained is 
represented by linear functions of the original variables. 
So, the importance of the variables in the classification pro-
cess can be easily perceived [37]. The PLS-DA is a more 
complex supervised classification technique and should be 
used if a deeper mathematical treatment is required. This 
technique is usually applied when p explanatory variables 
show high multicollinearity and/or are greater than the total 
number of samples/observations (N). The PLS procedure 
implies a dimension reduction step by forming new orthog-
onal variables (linear combinations of the original vari-
ables, namely principal component (PCs) functions, which 
coefficients involve information about the variances and 
covariances of both the explanatory and response variables. 
The model obtained is complex since new variables are 
represented in a new dimensional space [37]. The SPLS-
DA is based in the sparsity principle [38], on the basis that 
not all explanatory variables are needed to the fit model, 
i.e., meaning that a subset of original variables could be 
mainly responsible for determining the response. There-
fore, SPLS-DA also has the ability to perform feature selec-
tion keeping the structure of PLS-DA model. Considering 
that some variables may enhance noise effects in PLS-DA 
prediction, the SPLS-DA technique imposes sparsity on 
the dimension reduction step of PLS by selecting variables 
and increasing the predictive power of the model [37]. As 
in PLS technique, SPLS uses a data matrix computed by 
principal components and not the original information of 
explanatory and response variables. A major disadvantage 
of LDA compared with the other two other multivariate 
techniques is the lack of robustness regarding the existence 
of collinear variables. To overcome this drawback, LDA 
was also implemented coupled with a meta-heuristic simu-
lated annealing (SA) variable selection algorithm, enabling 
the selection of the best subsets of independent predictors 
among the E-tongue potentiometric signals recorded and/
or the sensory sensations assessed by the trained panelists. 
This algorithm pursues to select the optimal conditions 
based on the annealing physic process, which mimics the 
slow controlled cooling process of a heated material in 
order that the material can reach the most regular possible 
crystal lattice configuration (free from defects at a mini-
mum energy crystalline state). It is classified as a meta-heu-
ristic algorithm, since it is able to identify a subset of the 

original independent variables that correspond to a global 
optimum for a given approximation criterion, selected 
within a large search space of other possible subsets of 
variables [39]. This means that for optimizing a system 
by selecting the best subset of k variables considering this 
type of thermodynamic behavior, in each iteration, values 
of two solutions (the current subset of k variables and the 
new subset to be tested, also with k variables) are compared 
according to a criterion that measures the quality of those 
subsets of variables (for instance, accuracy of a classifica-
tion model). The new solution is randomly selected in the 
neighborhood of the current solution and tested according 
to the simulated annealing rules, becoming the new solu-
tion if the criterion has best values than the original. The 
algorithm continues the search for new solutions until it 
reaches the maximum number of interactions established at 
the beginning of procedure.

To evaluate the classification models’ stability and qual-
ity, a leave-one-out cross-validation (LOO-CV) procedure 
was applied. Although this methodology may be consid-
ered an overoptimistic procedure, the use of a more robust 
cross-validation approach (e.g., based on an external vali-
dation set) was not possible due to the large number of 
groups considered (eight monovarietal EVOOs) and the 
reduction in the number of independent olive oil samples 
for each group (between 2 and 4). Indeed, when the num-
ber of samples is small, LOO-CV procedure has proven to 
be an adequate procedure to test model prediction capabil-
ity and to minimize the risk of overoptimistic predictive 
model performance [3, 25, 40].

So, as a first step, the discriminative capability of the 
olfactory–gustatory sensations was tested, being the qual-
ity of the established models (LDA, PLS-DA, SPLS-DA, 
and LDA-SA) were evaluated based on the LOO-CV pro-
cedure. Secondly, the same procedure was applied to the 
potentiometric signal profiles, and as before, their classifi-
cation capabilities were also evaluated using the LOO-CV 
methodology. To the best model, the spatial distribution of 
the single-cultivar EVOO original groups was tentatively 
correlated with the taste sensory attributes evaluated by the 
trained panelists, by means of the linear Pearson correla-
tion coefficient (R-Pearson), for inferring about the practi-
cal potential of the E-tongue in mimicking the human taste 
sensory perception of the monovarietal EVOO analyzed.

Finally, a low-level of abstraction data fusion approach 
was applied, combining sensor signal profiles and sensory 
descriptors of the olive oils, to evaluate synergies in the 
information contained in both data sets. Data set size of 
each source is of similar magnitude (44 × 40 and 44 × 14; 
for E-tongue and sensory trained panel analysis, respec-
tively) minimizing the possibility of the largest data set 
collapsed the other [28, 41, 42]. To normalize the weight 
of each variable for each of the final linear multivariate 
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classification models, variable scaling and centering pro-
cedures were applied. The main goal of this approach was 
to improve Spanish monovarietal EVOO discrimination 
according to olive cultivar.

All statistical analyses were performed using the caret 
[37, 43], Subselect [39, 44], pls [37, 45], spls [37, 46], and 
MASS [47] packages of the open-source statistical pro-
gram R (version 2.15.1).

Results and discussion

Sensory data evaluation

Each monovarietal EVOO sample was evaluated by four 
trained sensory panelists and classified according to 14 
organoleptic descriptors including five olfactory sensations, 
seven gustatory–retronasal sensations, and two final olfac-
tory–gustatory sensations, according to the IOC directives 
[31, 32]. The two-way ANOVA showed that some olive oil 
sensory descriptors were significantly affected by the pro-
duction year (olfactory sensations: olive fruitiness, green, 
and harmony; gustatory–retronasal sensations: bitter, pun-
gent, green, and harmony; final olfactory–gustatory sensa-
tions: persistence; p values <0.0154) and olive oil cultivar 
(olfactory sensations: olive fruitiness and harmony; gusta-
tory–retronasal sensations: sweet, pungent, other positive 
sensations, and harmony; final olfactory–gustatory sensa-
tions: persistence; p values <0.0357), but the interaction 
effects were not statistically significant (p value >0.1050) 
at a 5 % significance level. The differences found between 
production years may be related to the different edapho-
climatic conditions. However, in this work, olive oils were 
used, regardless of their production year, trying to evaluate 
the potentiality of the data fusion approach. The significant 
effect of olive cultivar in some olive oil sensory sensa-
tions may be attributed to their different physicochemical 
composition, which affects the organoleptic characteristics 
such as pungency, bitterness, and astringency. In Fig.  1, 
a comparison of mean sensory data from the quantitative 
descriptive analysis (QDA), for the eight single-cultivar 
EVOO evaluated, is shown. The radar plot, for each sen-
sory descriptor, also shows which olive cultivar means are 
significantly different at a 5 % level, according to the post 
hoc Tukey’s multiple comparison test. Globally, it can be 
stated that EVOO from cvs. Redondilla and Cornicabra are 
those that show more differences within olfactory sensa-
tions. Based on the gustatory–retronasal sensations, it was 
found that EVOOs from cvs. Manzanilla, Redondilla, and 
Royuela were those that showed the greater differences.

Finally, the capability of the sensory descriptors to dis-
criminate the different single-cultivar EVOO was assessed 
by means of the supervised linear techniques: LDA, 

PLS-DA, SPLA-DA, and LDA-SA. Table  2 shows the 
accuracy obtained for all these multivariate techniques. The 
LDA and PLS-DA results were obtained considering all 
the independent variables in the model. For PLS-DA and 
SPLS-DA approaches, the number of PCs in the model was 
select from a search process with a maximum number of 14 
possible PCs [equal to the number of PCs defined by prin-
cipal component analysis (PCA)]. Also, the SPLS-DA per-
formed feature variable selection within the PCs allowing 
to increase the predictive power of the model. The LDA-
SA uses SA algorithm to identify a subset of the original 
independent variables. To establish all the multivariate clas-
sification models, the global optimum criterion used was 
the accuracy (i.e., the level of correct classifications using 
the LOO-CV procedure also called sensitivity).

The best result concerning single-cultivar EVOO classi-
fication based on olive oil sensory attributes (greater accu-
racy percentage) was obtained from the LDA-SA technique 
(57 % of correct classifications for LOO-CV, according to 
olive cultivar). The worst performances were achieved by 
LDA and PLS-DA methods (39  % of correct classifica-
tions). Since among the organoleptic attributes no multicol-
linearity issues were found (R2-Pearson  <  0.48), the poor 
results of LDA and PLS-DA techniques may be due to the 
presence of variables that increase noise effects affecting 
their prediction capabilities, being this problem slightly 
reduced, but not completely eliminated, with the variable 
selection procedure of SPLS-DA technique.

The SA algorithm used with the LDA technique, 
allowed selecting a set of seven sensory attributes (two 
olfactory sensations: olive fruitiness and other fruits; four 
gustatory–retronasal sensations: sweet, bitter, and pun-
gency; and one final olfactory–gustatory sensation: com-
plexity) from the 14 available organoleptic sensations, 
resulting in a linear discriminant model with seven func-
tions (100  % of explained variance). The model obtained 
enabled a correct classification percentage of only 84 and 
57 % for the original data group (Fig. 2, for the first three 
discriminant functions) and for the LOO-CV procedure. 
So, it is clear that, although the above-mentioned sensory 
descriptors may contribute to EVOO classification accord-
ing to olive cultivar, they cannot be used for discrimina-
tion issues, and alone, these attributes cannot be applied 
to guarantee correct monovarietal EVOO labeling. Indeed, 
except for EVOO from cvs. Redondilla and Zorzal, all 
other single-cultivar EVOOs present misclassification 
problems. Nevertheless, it should be noticed that from the 
sensory descriptors assessed by the panelists, gustatory–
retronasal sensations were those that most contributed for 
olive cultivar recognition. In conclusion, the known capa-
bility of human sensory evaluation to assess organoleptic 
characteristics of virgin olive oil used for quality classifica-
tion seems to be not sufficient to discriminate high-quality 
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Fig. 1   Radar plot of the olive oil sensory descriptors assessed by the 
trained panelists for each monovarietal EVOO (ARB: cv. Arbosana; 
ARR: cv. Arroniz; COR: cv. Cornicabra; FRA: cv. Frantoio; MAN: 
cv. Manzanilla; RED: cv. Redondilla; ROY: cv. Royuela; and ZOR: 

cv. Zorzal). Different letters for the same sensory descriptor point out 
significant statistical differences identified by Tukey’s post hoc multi-
ple comparison test (p < 0.05)
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monovarietal EVOO according to olive cultivar. Neverthe-
less, its potential exists and could be complemented by 
an artificial electronic sensory device like the electronic 
tongue.

E‑tongue signals analysis

On the whole, 88 assays were carried out (22 samples of 
eight EVOO × 2 bottles × 1 extraction of each bottle × 2 
analysis), each providing 40 potentiometric signals, vary-
ing from -0.03 V to +0.25 V (20 different sensor mem-
branes used in duplicate: S1:1–S1:20 and S2:1–S2:20, as 
previously discussed [3, 40]). Since the voltage signals, 
recorded during the analysis of the hydroethanolic extracts 
of the monovarietal EVOO studied, are similar for all sen-
sors and the respective range of variation is relatively nar-
row, as shown in Fig.  3 for two EVOOs (e.g., ARR and 
MAN), there was no need of data scaling. In fact, for the 
duplicate analysis of the hydroethanolic extract of each of 
the 44 olive oil bottles, the %RSD values of the signals 
recorded with each one of 40 lipid membranes varied from 
0.25 to 1.8 %; for the analysis of the two bottles collected 
for each monovarietal EVOO, the %RSD ranged from 5.6 
to 8.7  %; and finally, for the analysis of all bottles col-
lected, the %RSD varied from 4.6 to 6.9 %. These results 
showed satisfactory accuracy of the E-tongue analysis.

The results from the application of the four linear mul-
tivariate techniques using the E-tongue potentiometric 
signal profiles to discriminate the different single-cultivar 
EVOOs are presented in Table  2. As in the previous sec-
tion, the comparison between the four techniques was 
made based on the accuracies for LOO-CV procedure. In 
this case, the optimum number of PCs for PLS-DA and 
SPLS-DA models was selected within 38 possible PCs 
(number of PCs defined by PCA). Again, the best perfor-
mance was obtained from the LDA-SA technique (70  % 
of correct classifications for LOO-CV) compared with the 
three other linear multivariate techniques (LDA, PLS-DA, 
and SPLS-DA: ≤27  % of correct classifications). Indeed, 
the SA variable selection procedure allowed choosing the 
most relevant signals for establishing the best predictive 
LDA model, minimizing the risk of using high collinear 
variables. So, the resulting LDA-SA classification model 
had three significant discriminant functions, explaining 
98.86  % of the original data variability. The model was 
based on 26 non-collinear sensor signals (S1:2, S1:4, S1:5, 
S1:7, S1:9–S1:13, S1:15; S1:17, S1:18, S2:1–S2:3, S2:5–
S2:7, S2:9–S2:11, S2:13, S2:14; S2:17–S2:19), allowing 
100 and 70  % of correct classifications for original data 
(Fig.  4) and LOO-CV procedure, respectively. The SA 

Table 2   Discriminative capability of the sensory descriptors (olfac-
tory–gustatory sensations), potentiometric signal profiles, and low-
level of abstraction data fusion approach was applied, combining 
sensor signal profiles and sensory descriptors of the olive oils, toward 
single-cultivar EVOO differentiation, based on the accuracy values in 
the LOO-CV procedure

a  Accuracy = % of correct classifications

Data matrix Accuracy for LOO-CV (%)a

LDA PLS-DA SPLS-DA LDA-SA

Sensory attributes 39 39 45 57

 No of selected sensory 
attributes

14 14 7 7

 No of principal components – 8 4 –

E-tongue sensor signal  
profiles

23 27 27 70

 No of selected E-tongue 
signals

40 40 29 26

 No of principal components – 24 1 –

Low-level data fusion 7 41 48 100

 No of selected sensory 
attributes

14 14 4 9

 No of selected E-tongue 
signals

40 40 8 18

 No of principal components – 10 5 –
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Fig. 2   Spanish monovarietal EVOO classification performance for 
the sensory attributes data: first and second LDA functions based on 
the best subset of sensory descriptors (seven olfactory, gustatory–ret-
ronasal, and final olfactory–gustatory sensations), assessed by trained 
panelists, selected using the SA meta-heuristic algorithm (ARB: cv. 
Arbosana; ARR: cv. Arroniz; COR: cv. Cornicabra; FRA: cv. Fran-
toio; MAN: cv. Manzanilla; RED: cv. Redondilla; ROY: cv. Royuela; 
and ZOR: cv. Zorzal)
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algorithm selected seven repeated sensors, with the same 
membrane composition. The inclusion of repeated sensors 
could be justified by their slight different physical proper-
ties due to the possible inhomogeneous membrane surface, 
which could be attributed to the drop-by-drop membrane 
preparation technique [40]. On the other hand, the inclusion 

of repeated sensors in a multivariate model may increase its 
qualitative and/or quantitative performance [48].

It should be noticed that 65 % of the E-tongue sensors 
(17 of the 26) used in the classification model are the same 
as reported by Dias et al. [3] for successfully discriminat-
ing three Spanish monovarietal EVOOs (cvs. Arbequina, 
Hojiblanca, and Picual), which were also produced in the 
same geographical region as those analyzed in the present 
work. Although the predictive LDA-SA model sensitivity 
was not very satisfactory (only EVOO samples from cvs. 
Arbosana, Arroniz, and Royuela were not misclassified), a 
clear increase was obtained compared to that of the LDA-
SA model established using sensory descriptors evaluated 
by the trained panelists. Also, as already pointed out [3], 
the capability of the potentiometric E-tongue to correctly 
classify single-cultivar EVOO according to olive culti-
var may be attributed to the nature and level of the polar 
compounds present in the EVOO extracts analyzed, which 
could be related to sensory olive oil attributes such as bit-
terness, astringency, and pungency. Indeed, this evidence 
was further demonstrated in the present work, since the 
spatial distribution of the EVOO group centroids (mean 
value of the discriminant scores for a given category) of 
the first linear discriminant function (cvs. centroids order: 
Royuela < Arroniz < Frantoio < Zorzal < Arbosana < Cor-
nicabra  <  Redondilla  <  Manzanilla), which explained 
more than 95  % of the potentiometric E-tongue signals 
variability, could be statistically correlated with gusta-
tory–retronasal descriptors assessed by the trained pan-
elists: bitter (R-Pearson = −0.83; p value = 0.0110), pun-
gent (R-Pearson = −0.91; p value =  0.0017), and green 

Fig. 3   E-tongue potentiometric 
signal profiles of the hydroetha-
nolic extracts of two monovari-
etal EVOO (ARR: cv. Arroniz; 
MAN: cv. Manzanilla)
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Fig. 4   Spanish monovarietal EVOO classification performance for 
the sensor signals data: first and second LDA functions based on the 
best subset of E-tongue potentiometric signals (26 sensors) selected 
using the SA meta-heuristic algorithm (ARB: cv. Arbosana; ARR: cv. 
Arroniz; COR: cv. Cornicabra; FRA: cv. Frantoio; MAN: cv. Manza-
nilla; RED: cv. Redondilla; ROY: cv. Royuela; and ZOR: cv. Zorzal)
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(R-Pearson = −0.80; p value = 0.0180) sensations. These 
results strengthen the idea that the potentiometric E-tongue 
can mimic olive oil gustatory–retronasal human sensations, 
which was shown for the first time using sensory sensations 
data. Then again, this behavior was expected since this type 
of lipid polymeric membranes could recognize and assess 
standard solutions of basic tastant substances such as acid, 
bitter, salty, sweet, and umami [33].

Low‑level data fusion of sensory attributes 
and E‑tongue signals

The results previously obtained using sensory attributes 
or E-tongue signals individually showed that both meth-
odologies could contribute to monovarietal EVOO dis-
crimination by olive cultivar although with unsatisfactory 
performances. So, the simultaneous use of both human and 
artificial evaluations was further explored trying to demon-
strate their complementary performances. For that, a low-
level fusion approach was implemented, merging the 40 
potentiometric signals recorded during the electrochemi-
cal analysis of the monovarietal EVOO hydroethanolic 
extracts, with the 14 sensory attributes evaluated by the 
trained panelists. A single matrix containing 44 samples by 
54 variables was obtained.

The accuracy of the low-level fusion approach of the 
sensory attributes and E-tongue signals to discriminate the 
different single-cultivar EVOO obtained by applying each 
of the four linear multivariate techniques is presented in 
Table  2. In this study, the number of PCs established for 
PLS-DA and SPLS-DA techniques was set based on a 
search procedure within 42 possible PCs (number of PCs 
defined by PCA). Once again, the results confirmed that the 
LDA-SA technique established the most powerful predic-
tive model (100 % of correct classification for LOO-CV), 
followed by SPLS-DA, although with a quite lower classifi-
cation predictive capability (only 48 % of correct classified 
samples), showing nevertheless that the variable selection 
procedures are advantageous, allowing to obtain simpler 
models with better predictive capabilities. It should be 
remarked that the low-level data fusion was only an effec-
tive classification procedure when combined with LDA-SA 
technique. Indeed, simple human sensory evaluation cou-
pled with SPLS-DA or LDA-SA, or E-tongue data coupled 
with LDA-SA showed similar or higher classification per-
formances (ranging from 45 to 70 % of correct classifica-
tions as shown in Table 2).

Regarding the best linear multivariate technique, a LDA-
SA model with two discriminant functions, explaining 
100 % of the original data variability (99.91 and 0.03 %, 
respectively), was established based on signal profiles of 
18 potentiometric E-tongue sensors (S1:1, S1:3, S1:6–S1:8, 
S1:12, S1:13, S1:19, S1:20, S2:9, S2:10, S2:12–S2:15, 

S2:17, S2:18, and S2:20) and nine sensory attributes (olfac-
tory sensations: other fruits and other positive sensations; 
gustatory–retronasal sensations: olive fruitiness, bitter, pun-
gent, green, other positive sensations, and harmony; final 
olfactory–gustatory sensations: complexity), selected by 
the SA algorithm. The SA variable selection algorithm ena-
bled the inclusion of only three repeated sensors, with the 
same membrane composition, in the discrimination model, 
which could improve the global model of the multivariate 
statistical performance [48]. Although the second discrimi-
nant function LDA-SA obtained model was not significant 
in the classification of groups of different varieties of olive 
oil, it was used to establish a two-dimensional discriminant 
graphic in order to better visualize the groups separation.

The proposed model allowed a 100  % correct classifi-
cation of the original data (Fig. 5), as well as 100 % pre-
dictive correct classification for the LOO-CV procedure, as 
previously mentioned. This result shows that the E-tongue 
device fused with sensory attributes could be used to cor-
rectly classify monovarietal EVOO according to correct 
olive cultivar and so could be used as practical tool to 
guarantee the correct labeling of single-cultivar EVOO for 
cvs. Arbosana, Arroniz, Cornicabra, Frantoio, Manzanilla, 
Redondilla, or Royuela.

So, this work showed the potential use of electrochemi-
cal sensors to evaluate olive oil quality. Indeed, electronic 

−4

0

4

−200 0 200

First discriminant function (99.91%)

S
ec

on
d 

di
sc

rim
in

an
t f

un
ct

io
n 

(0
.0

3%
) ARBO

ARR

COR

FRA

MAN

RED

ROY

ZOR

Fig. 5   Spanish monovarietal EVOO classification performance for 
the E-tongue data using a low-level data fusion approach: first and 
second LDA functions based on the best subset E-tongue (18 sen-
sors) and sensory descriptors (nine olfactory, gustatory–retronasal, 
and final olfactory–gustatory sensations), selected using the SA meta-
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noses (E-noses) and electronic tongues (E-tongues), indi-
vidually or combined, have been proposed in the last dec-
ade for olive oil characterization using different multivari-
ate statistical techniques. For instance, an E-nose has been 
successfully used for the discrimination of different Medi-
terranean single-cultivar EVOO [49]. More recently, our 
research team has shown that an E-tongue could be applied 
to successfully discriminate Portuguese (100 % of correct 
classification) or Spanish (97.5–100 % of correct classifica-
tions) monovarietal EVOO according to the olive cultivar, 
depending on the number of olive cultivars evaluated (3 or 
11) [3, 20].

Regarding monovarietal olive oil classification accord-
ing to olive cultivar, other approaches have been described 
in the literature, reporting in some cases slightly less accu-
rate correct classification performances (ranging from 70 to 
100  %) depending on the analytical technique used (e.g., 
NMR, NIR, and MIR spectroscopy; PTR-MS; HS-SPME-
GC/MS; SNP-based PCR–RFLP capillary electrophoresis; 
SNP-based CAPS assays), the number of olive cultivars 
under study (3, 5, or 10 cultivars) and chemometric tool 
used (e.g., LDA PLS-DA and canonical discriminant analy-
sis) [13, 14, 22, 50–52].

Conclusions

Previously it was proven that a potentiometric E-tongue 
could be used to classify monovarietal EVOO. However, 
the successful discrimination performance was obtained 
when few single-cultivar EVOOs were evaluated. In this 
work, it was demonstrated that the proposed approach 
could be extended to a greater number single-cultivar olive 
oils when a low-level data fusion approach was adopted, 
merging E-tongue and human sensory analysis. The pro-
posed strategy enables a full predictive LOO-CV discrimi-
nation of olive oil samples from eight monovarietal EVOOs 
(100  % correct classifications), produced in two different 
years. Moreover, for the first time, it was shown that the 
E-tongue could mimic human gustatory–retronasal sensa-
tions of EVOO. The successful classification was achieved 
using a LDA-SA model, based on the most informative 
potentiometric signals and sensory descriptors, chosen 
using the SA variable selection algorithm. This methodol-
ogy proved to be more powerful than the two most common 
linear supervised multivariate techniques, LDA and PLS-
DA, and even SPLS-DA, a PLS improved methodology that 
allows feature variable selection. So, it could be concluded 
that, from a practical point of view, E-tongue and sensory 
analysis performed by trained panelists are complementary 
techniques, contributing to improve the classification rate 
of monovarietal EVOO according to olive cultivar. Also, it 
is shown that the traditional use of olive oil panel sensory 

analysis could be extended to the classification of mono-
varietal EVOO according to olive cultivar if a complemen-
tary approach was implemented by fusing human (sensory 
panel) and artificial (electronic tongue) sensory assessment. 
So, the use of this type of tool may indeed allow guarantee-
ing single-cultivar EVOO correct labeling, minimizing the 
risk of frauds of this high-value product.
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