11 research outputs found

    Brain–gut–microbiome interactions in obesity and food addiction

    No full text
    Normal eating behavior is coordinated by the tightly regulated balance between intestinal and extra-intestinal homeostatic and hedonic mechanisms. By contrast, food addiction represents a complex, maladaptive eating behavior that reflects alterations in brain–gut–microbiome (BGM) interactions and a shift of this balance towards hedonic mechanisms. Each component of the BGM axis has been implicated in the development of food addiction, with both brain to gut and gut to brain signaling playing a role. Early life influences can prime the infant gut microbiome and brain for food addiction, which might be further reinforced by increased antibiotic usage and dietary patterns throughout adulthood. The ubiquitous availability and marketing of inexpensive, highly palatable and calorie dense food can further shift this balance towards hedonic eating through both central (disruptions in dopaminergic signaling) and intestinal (vagal afferent function, metabolic toxaemia, systemic immune activation, changes to gut microbiome and metabolome) mechanisms. In this Review, we propose a systems biological model of BGM interactions, which incorporates published reports on food addiction, and provides novel insights into treatment targets aimed at each level of the BGM axis

    Objectively-measured and self-reported physical activity and fitness in relation to inflammatory markers in European adolescents: The HELENA Study

    No full text

    Transporters of glucose and other carbohydrates in bacteria

    No full text

    Estimated GFR and the Effect of Intensive Blood Pressure Lowering after Acute Intracerebral Hemorrhage

    No full text
    Background: The kidney-brain interaction has been a topic of growing interest. Past studies of the effect of kidney function on intracerebral hemorrhage (ICH) outcomes have yielded inconsistent findings. Although the second, main phase of the Intensive Blood Pressure Reduction in Acute Cerebral Hemorrhage Trial (INTERACT2) suggests the effectiveness of early intensive blood pressure (BP) lowering in improving functional recovery after ICH, the balance of potential benefits and harms of this treatment in those with decreased kidney function remains uncertain. Study Design: Secondary analysis of INTERACT2, which randomly assigned patients with ICH with elevated systolic BP (SBP) to intensive (target SBP < 140 mm Hg) or contemporaneous guideline-based (target SBP < 180 mm Hg) BP management. Setting & Participants: 2,823 patients from 144 clinical hospitals in 21 countries. Predictors Admission estimated glomerular filtration rates (eGFRs) of patients were categorized into 3 groups based on the CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration) creatinine equation: normal or high, mildly decreased, and moderately to severely decreased (>90, 60-90, and <60 mL/min/1.73 m2, respectively). Outcomes: The effect of admission eGFR on the primary outcome of death or major disability at 90 days (defined as modified Rankin Scale scores of 3-6) was analyzed using a multivariable logistic regression model. Potential effect modification of intensive BP lowering treatment by admission eGFR was assessed by interaction terms. Results: Of 2,623 included participants, 912 (35%) and 280 (11%) had mildly and moderately/severely decreased eGFRs, respectively. Patients with moderately/severely decreased eGFRs had the greatest risk for death or major disability at 90 days (adjusted OR, 1.82; 95% CI, 1.28-2.61). Effects of early intensive BP lowering were consistent across different eGFRs (P = 0.5 for homogeneity). Limitations: Generalizability issues arising from a clinical trial population. Conclusions: Decreased eGFR predicts poor outcome in acute ICH. Early intensive BP lowering provides similar treatment effects in patients with ICH with decreased eGFRs

    Edoxaban versus warfarin for the treatment of symptomatic venous thromboembolism.

    Get PDF
    BACKGROUND: Whether the oral factor Xa inhibitor edoxaban can be an alternative to warfarin in patients with venous thromboembolism is unclear. METHODS: In a randomized, double-blind, noninferiority study, we randomly assigned patients with acute venous thromboembolism, who had initially received heparin, to receive edoxaban at a dose of 60 mg once daily, or 30 mg once daily (e.g., in the case of patients with creatinine clearance of 30 to 50 ml per minute or a body weight below 60 kg), or to receive warfarin. Patients received the study drug for 3 to 12 months. The primary efficacy outcome was recurrent symptomatic venous thromboembolism. The principal safety outcome was major or clinically relevant nonmajor bleeding. RESULTS: A total of 4921 patients presented with deep-vein thrombosis, and 3319 with a pulmonary embolism. Among patients receiving warfarin, the time in the therapeutic range was 63.5%. Edoxaban was noninferior to warfarin with respect to the primary efficacy outcome, which occurred in 130 patients in the edoxaban group (3.2%) and 146 patients in the warfarin group (3.5%) (hazard ratio, 0.89; 95% confidence interval [CI], 0.70 to 1.13; P<0.001 for noninferiority). The safety outcome occurred in 349 patients (8.5%) in the edoxaban group and 423 patients (10.3%) in the warfarin group (hazard ratio, 0.81; 95% CI, 0.71 to 0.94; P=0.004 for superiority). The rates of other adverse events were similar in the two groups. A total of 938 patients with pulmonary embolism had right ventricular dysfunction, as assessed by measurement of N-terminal pro-brain natriuretic peptide levels; the rate of recurrent venous thromboembolism in this subgroup was 3.3% in the edoxaban group and 6.2% in the warfarin group (hazard ratio, 0.52; 95% CI, 0.28 to 0.98). CONCLUSIONS: Edoxaban administered once daily after initial treatment with heparin was noninferior to high-quality standard therapy and caused significantly less bleeding in a broad spectrum of patients with venous thromboembolism, including those with severe pulmonary embolism. (Funded by Daiichi-Sankyo; Hokusai-VTE ClinicalTrials.gov number, NCT00986154.)

    Guidelines for the use and interpretation of assays for monitoring autophagy

    Get PDF
    In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field

    Strategies and performance of the CMS silicon tracker alignment during LHC Run 2

    No full text

    Poster session 3Cell growth, differentiation and stem cells - Heart511The role of the endocannabinoid system in modelling muscular dystrophy cardiac disease with induced pluripotent stem cells.512An emerging role of T lymphocytes in cardiac regenerative processes in heart failure due to dilated cardiomyopathy513Canonical wnt signaling reverses the ‘aged/senescent’ human endogenous cardiac stem cell phenotype514Hippo signalling modulates survival of human induced pluripotent stem cell-derived cardiomyocytes515Biocompatibility of mesenchymal stem cells with a spider silk matrix and its potential use as scaffold for cardiac tissue regeneration516A snapshot of genome-wide transcription in human induced pluripotent stem cell-derived hepatocyte-like cells (iPSC-HLCs)517Can NOS/sGC/cGK1 pathway trigger the differentiation and maturation of mouse embryonic stem cells (ESCs)?518Introduction of external Ik1 to human-induced pluripotent stem cell-derived cardiomyocytes via Ik1-expressing HEK293519Cell therapy of the heart studied using adult myocardial slices in vitro520Enhancement of the paracrine potential of human adipose derived stem cells when cultured as spheroid bodies521Mechanosensitivity of cardiomyocyte progenitor cells: the strain response in 2D and 3D environments522The effect of the vascular-like network on the maturation of the human induced pluripotent stem cell derived cardiomyocytes.Transcriptional control and RNA species - Heart525Gene expression regulation in heart failure: from pathobiology to bioinformatics526Human transcriptome in idiopathic dilated cardiomyopathy - a novel high throughput screening527A high-throghput approach unveils putative miRNA-mediated mitochondria-targeted cardioprotective circuits activated by T3 in the post ischemia reperfusion setting528The effect of uraemia on the expression of miR-212/132 and the calcineurin pathway in the rat heartCytokines and cellular inflammation - Heart531Lack of growth differentiation factor 15 aggravates adverse cardiac remodeling upon pressure-overload in mice532Blocking heteromerization of platelet chemokines ccl5 and cxcl4 reduces inflammation and preserves heart function after myocardial infarction533Is there an association between low-dose aspirin use and clinical outcome in HFPEF? Implications of modulating monocyte function and inflammatory mediator release534N-terminal truncated intracellular matrix metalloproteinase-2 expression in diabetic heart.535Expression of CD39 and CD73 on peripheral T-cell subsets in calcific aortic stenosis536Mast cells in the atrial myocardium of patients with atrial fibrillation: a comparison with patients in sinus rhythm539Characteristics of the inflammatory response in patients with coronary artery disease and arterial hypertension540Pro-inflammatory cytokines as cardiovascular events predictors in rheumatoid arthritis and asymptomatic atherosclerosis541Characterization of FVB/N murinic bone marrow-derived macrophage polarization into M1 and M2 phenotypes542The biological expression and thoracic anterior pain syndromeSignal transduction - Heart545The association of heat shock protein 90 and TGFbeta receptor I is involved in collagen production during cardiac remodelling in aortic-banded mice546Loss of the inhibitory GalphaO protein in the rostral ventrolateral medulla of the brainstem leads to abnormalities in cardiovascular reflexes and altered ventricular excitablitiy547Selenoprotein P regulates pressure overload-induced cardiac remodeling548Study of adenylyl cyclase activity in erythrocyte membranes in patients with chronic heart failure549Direct thrombin inhibitors inhibit atrial myocardium hypertrophy in a rat model of heart failure and atrial remodeling550Tissue factor / FVIIa transactivates the IGF-1R by a Src-dependent phosphorylation of caveolin-1551Notch signaling is differently altered in endothelial and smooth muscle cells of ascending aortic aneurysm patients552Frizzled 5 expression is essential for endothelial proliferation and migration553Modulation of vascular function and ROS production by novel synthetic benzopyran analogues in diabetes mellitusExtracellular matrix and fibrosis - Heart556Cardiac fibroblasts as inflammatory supporter cells trigger cardiac inflammation in heart failure557A role for galectin-3 in calcific aortic valve stenosis558Omega-3 polyunsaturated fatty acids- can they decrease risk for ventricular fibrillation?559Serum levels of elastin derived peptides and circulating elastin-antielastin immune complexes in sera of patients with coronary artery disease560Endocardial fibroelastosis is secondary to hemodynamic alterations in the chick model of hypoplastic left heart syndrome561Dynamics of serum levels of matrix metalloproteinases in primary anterior STEMI patients564Deletion of the alpha-7 nicotinic acetylcholine receptor changes the vascular remodeling induced by transverse aortic constriction in mice.565Extracellular matrix remodelling in response to venous hypertension: proteomics of human varicose veinsIon channels, ion exchangers and cellular electrophysiology - Heart568Microtubule-associated protein RP/EB family member 1 modulates sodium channel trafficking and cardiac conduction569Investigation of electrophysiological abnormalities in a rabbit athlete's heart model570Upregulation of expression of multiple genes in the atrioventricular node of streptozotocin-induced diabetic rat571miR-1 as a regulator of sinoatrial rhythm in endurance training adaptation572Selective sodium-calcium exchanger inhibition reduces myocardial dysfunction associated with hypokalaemia and ventricular fibrillation573Effect of racemic and levo-methadone on action potential of human ventricular cardiomyocytes574Acute temperature effects on the chick embryonic heart functionVasculogenesis, angiogenesis and arteriogenesis577Clinical improvement and enhanced collateral vessel growth after monocyte transplantation in mice578The role of HIF-1 alpha, VEGF and obstructive sleep apnoea in the development of coronary collateral circulation579Initiating cardiac repair with a trans-coronary sinus catheter intervention in an ischemia/reperfusion porcine animal model580Early adaptation of pre-existing collaterals after acute arteriolar and venular microocclusion: an in vivo study in chick chorioallantoic membraneEndothelium583EDH-type responses to the activator of potassium KCa2.3 and KCa3.1 channels SKA-31 in the small mesenteric artery from spontaneously hypertensive rats584The peculiarities of endothelial dysfunction in patients with chronic renocardial syndrome585Endothelial dysfunction, atherosclerosis of the carotid arteries and level of leptin in patient with coronary heart disease in combination with hepatic steatosis depend from body mass index.586Role of non-coding RNAs in thoracic aortic aneurysm associated with bicuspid aortic valve587Cigarette smoke extract abrogates atheroprotective effects of high laminar flow on endothelial function588The prognostic value of anti-connective tissue antibodies in coronary heart disease and asymptomatic atherosclerosis589Novel potential properties of bioactive peptides from spanish dry-cured ham on the endothelium.Lipids592Intermediate density lipoprotein is associated with monocyte subset distribution in patients with stable atherosclerosis593The characteristics of dyslipidemia in rheumatoid arthritisAtherosclerosis596Macrophages differentiated in vitro are heterogeneous: morphological and functional profile in patients with coronary artery disease597Palmitoylethanolamide promotes anti-inflammatory phenotype of macrophages and attenuates plaque formation in ApoE-/- mice598Amiodarone versus esmolol in the perioperative period: an in vitro study of coronary artery bypass grafts599BMPRII signaling of fibrocytes, a mesenchymal progenitor cell population, is increased in STEMI and dyslipidemia600The characteristics of atherogenesis and systemic inflammation in rheumatoid arthritis601Role of adenosine-to-inosine RNA editing in human atherosclerosis602Presence of bacterial DNA in thrombus aspirates of patients with myocardial infarction603Novel E-selectin binding polymers reduce atherosclerotic lesions in ApoE(-/-) mice604Differential expression of the plasminogen receptor Plg-RKT in monocyte and macrophage subsets - possible functional consequences in atherogenesis605Apelin-13 treatment enhances the stability of atherosclerotic plaques606Mast cells are increased in the media of coronary lesions in patients with myocardial infarction and favor atherosclerotic plaque instability607Association of neutrophil to lymphocyte ratio with presence of isolated coronary artery ectasiaCalcium fluxes and excitation-contraction coupling610The coxsackie- and adenovirus receptor (CAR) regulates calcium homeostasis in the developing heart611HMW-AGEs application acutely reduces ICaL in adult cardiomyocytes612Measuring electrical conductibility of cardiac T-tubular systems613Postnatal development of cardiac excitation-contraction coupling in rats614Role of altered Ca2+ homeostasis during adverse cardiac remodeling after ischemia/reperfusion615Experimental study of sarcoplasmic reticulum dysfunction and energetic metabolism in failing myocardium associated with diabetes mellitusHibernation, stunning and preconditioning618Volatile anesthetic preconditioning attenuates ischemic-reperfusion injury in type II diabetic patients undergoing on-pump heart surgery619The effect of early and delayed phase of remote ischemic preconditioning on ischemia-reperfusion injury in the isolated hearts of healthy and diabetic rats620Post-conditioning with 1668-thioate leads to attenuation of the inflammatory response and remodeling with less fibrosis and better left ventricular function in a murine model of myocardial infarction621Maturation-related changes in response to ischemia-reperfusion injury and in effects of classical ischemic preconditioning and remote preconditioningMitochondria and energetics624Phase changes in myocardial mitochondrial respiration caused by hypoxic preconditioning or periodic hypoxic training625Desmin mutations depress mitochondrial metabolism626Methylene blue modulates mitochondrial function and monoamine oxidases-related ROS production in diabetic rat hearts627Doxorubicin modulates the real-time oxygen consumption rate of freshly isolated adult rat and human ventricular cardiomyocytesCardiomyopathies and fibrosis630Effects of genetic or pharmacologic inhibition of the ubiquitin/proteasome system on myocardial proteostasis and cardiac function631Suppression of Wnt signalling in a desmoglein-2 transgenic mouse model for arrhythmogenic cardiomyopathy632Cold-induced cardiac hypertrophy is reversed after thermo-neutral deacclimatization633CD45 is a sensitive marker to diagnose lymphocytic myocarditis in endomyocardial biopsies of living patients and in autopsies634Atrial epicardial adipose tissue derives from epicardial progenitors635Caloric restriction ameliorates cardiac function, sympathetic cardiac innervation and beta-adrenergic receptor signaling in an experimental model of post-ischemic heart failure636High fat diet improves cardiac remodelling and function after extensive myocardial infarction in mice637Epigenetic therapy reduces cardiac hypertrophy in murine models of heart failure638Imbalance of the VHL/HIF signaling in WT1+ Epicardial Progenitors results in coronary vascular defects, fibrosis and cardiac hypertrophy639Diastolic dysfunction is the first stage of the developing heart failure640Colchicine aggravates coxsackievirus B3 infection in miceArterial and pulmonary hypertension642Osteopontin as a marker of pulmonary hypertension in patients with coronary heart disease combined with chronic obstructive pulmonary disease643Myocardial dynamic stiffness is increased in experimental pulmonary hypertension partly due to incomplete relaxation644Hypotensive effect of quercetin is possibly mediated by down-regulation of immunotroteasome subunits in aorta of spontaneously hypertensive rats645Urocortin-2 improves right ventricular function and attenuates experimental pulmonary arterial hypertension646A preclinical evaluation of the anti-hypertensive properties of an aqueous extract of Agathosma (Buchu)Biomarkers648The adiponectin level in hypertensive females with rheumatoid arthritis and its relationship with subclinical atherosclerosis649Markers for identification of renal dysfunction in the patients with chronic heart failure650cardio-hepatic syndromes in chronic heart failure: North Africa profile651To study other biomarkers that assess during myocardial infarction652Interconnections of apelin levels with parameters of lipid metabolism in hypertension patients653Plasma proteomics in hypertension: prediction and follow-up of albuminuria during chronic renin-angiotensin system suppression654Soluble RAGE levels in plasma of patients with cerebrovascular events

    No full text
    corecore