566 research outputs found

    Oxygen: A Fundamental Property Regulating Pelagic Ecosystem Structure in the Coastal Southeastern Tropical Pacific

    Get PDF
    Background: In the southeastern tropical Pacific anchovy (Engraulis ringens) and sardine (Sardinops sagax) abundance have recently fluctuated on multidecadal scales and food and temperature have been proposed as the key parameters explaining these changes. However, ecological and paleoecological studies, and the fact that anchovies and sardines are favored differently in other regions, raise questions about the role of temperature. Here we investigate the role of oxygen in structuring fish populations in the Peruvian upwelling ecosystem that has evolved over anoxic conditions and is one of the world's most productive ecosystems in terms of forage fish. This study is particularly relevant given that the distribution of oxygen in the ocean is changing with uncertain consequences. Methodology/Principal Findings: A comprehensive data set is used to show how oxygen concentration and oxycline depth affect the abundance and distribution of pelagic fish. We show that the effects of oxygen on anchovy and sardine are opposite. Anchovy flourishes under relatively low oxygen conditions while sardine avoid periods/areas with low oxygen concentration and restricted habitat. Oxygen consumption, trophic structure and habitat compression play a fundamental role in fish dynamics in this important ecosystem. Conclusions/Significance: For the ocean off Peru we suggest that a key process, the need to breathe, has been neglected previously. Inclusion of this missing piece allows the development of a comprehensive conceptual model of pelagic fish populations and change in an ocean ecosystem impacted by low oxygen. Should current trends in oxygen in the ocean continue similar effects may be evident in other coastal upwelling ecosystems

    Transcription Inhibition by DRB Potentiates Recombinational Repair of UV Lesions in Mammalian Cells

    Get PDF
    Homologous recombination (HR) is intricately associated with replication, transcription and DNA repair in all organisms studied. However, the interplay between all these processes occurring simultaneously on the same DNA molecule is still poorly understood. Here, we study the interplay between transcription and HR during ultraviolet light (UV)-induced DNA damage in mammalian cells. Our results show that inhibition of transcription with 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB) increases the number of UV-induced DNA lesions (ÎłH2AX, 53BP1 foci formation), which correlates with a decrease in the survival of wild type or nucleotide excision repair defective cells. Furthermore, we observe an increase in RAD51 foci formation, suggesting HR is triggered in response to an increase in UV-induced DSBs, while inhibiting transcription. Unexpectedly, we observe that DRB fails to sensitise HR defective cells to UV treatment. Thus, increased RAD51 foci formation correlates with increased cell death, suggesting the existence of a futile HR repair of UV-induced DSBs which is linked to transcription inhibition

    Changes in the Viral Distribution Pattern after the Appearance of the Novel Influenza A H1N1 (pH1N1) Virus in Influenza-Like Illness Patients in Peru

    Get PDF
    Background: We describe the temporal variation in viral agents detected in influenza like illness (ILI) patients before and after the appearance of the ongoing pandemic influenza A (H1N1) (pH1N1) in Peru between 4-January and 13-July 2009. Methods: At the health centers, one oropharyngeal swab was obtained for viral isolation. From epidemiological week (EW) 1 to 18, at the US Naval Medical Research Center Detachment (NMRCD) in Lima, the specimens were inoculated into four cell lines for virus isolation. In addition, from EW 19 to 28, the specimens were also analyzed by real time-polymerase-chainreaction (rRT-PCR). Results: We enrolled 2,872 patients: 1,422 cases before the appearance of the pH1N1 virus, and 1,450 during the pandemic. Non-pH1N1 influenza A virus was the predominant viral strain circulating in Peru through (EW) 18, representing 57.8% of the confirmed cases; however, this predominance shifted to pH1N1 (51.5%) from EW 19–28. During this study period, most of pH1N1 cases were diagnosed in the capital city (Lima) followed by other cities including Cusco and Trujillo. In contrast, novel influenza cases were essentially absent in the tropical rain forest (jungle) cities during our study period. The city of Iquitos (Jungle) had the highest number of influenza B cases and only one pH1N1 case. Conclusions: The viral distribution in Peru changed upon the introduction of the pH1N1 virus compared to previous months. Although influenza A viruses continue to be the predominant viral pathogen, the pH1N1 virus predominated over the other influenza A viruses

    Measurement of CP Asymmetries and Branching Fractions in Charmless Two-Body B-Meson Decays to Pions and Kaons

    Get PDF
    We present improved measurements of CP-violation parameters in the decays B0→π+π−B^0 \to \pi^+ \pi^-, B0→K+π−B^0 \to K^+ \pi^-, and B0→π0π0B^0 \to \pi^0 \pi^0, and of the branching fractions for B0→π0π0B^0 \to \pi^0 \pi^0 and B0→K0π0B^0 \to K^0 \pi^0. The results are obtained with the full data set collected at the ΄(4S)\Upsilon(4S) resonance by the BABAR experiment at the PEP-II asymmetric-energy BB factory at the SLAC National Accelerator Laboratory, corresponding to 467±5467 \pm 5 million BBˉB\bar B pairs. We find the CP-violation parameter values and branching fractions Sπ+π−=−0.68±0.10±0.03,Cπ+π−=−0.25±0.08±0.02,AK−π+=−0.107±0.016−0.004+0.006,Cπ0π0=−0.43±0.26±0.05,Br(B0→π0π0)=(1.83±0.21±0.13)×10−6,Br(B0→K0π0)=(10.1±0.6±0.4)×10−6, S_{\pi^+\pi^-} = -0.68 \pm 0.10 \pm 0.03, C_{\pi^+\pi^-} = -0.25 \pm 0.08 \pm 0.02, A_{K^-\pi^+} = -0.107 \pm 0.016 ^{+0.006}_{-0.004}, C_{\pi^0\pi^0} = -0.43 \pm 0.26 \pm 0.05, Br(B^0 \to \pi^0 \pi^0) = (1.83 \pm 0.21 \pm 0.13) \times 10^{-6}, Br(B^0 \to K^0 \pi^0) = (10.1 \pm 0.6 \pm 0.4) \times 10^{-6}, where in each case, the first uncertainties are statistical and the second are systematic. We observe CP violation with a significance of 6.7 standard deviations for B0→π+π−B^0 \to\pi^+\pi^- and 6.1 standard deviations for B0→K+π−B^0 \to K^+ \pi^-, including systematic uncertainties. Constraints on the Unitarity Triangle angle α\alpha are determined from the isospin relations among the B→ππB \to \pi\pi rates and asymmetries. Considering only the solution preferred by the Standard Model, we find α\alpha to be in the range [71∘,109∘][71^\circ,109^\circ] at the 68% confidence level.Comment: 18 pages, 11 postscript figures, submitted to Phys. Rev.

    Recurrent Activity in Higher Order, Modality Non-Specific Brain Regions: A Granger Causality Analysis of Autobiographic Memory Retrieval

    Get PDF
    It has been proposed that the workings of the brain are mainly intrinsically generated recurrent neuronal activity, with sensory inputs as modifiers of such activity in both sensory and higher order modality non-specific regions. This is supported by the demonstration of recurrent neuronal activity in the visual system as a response to visual stimulation. In contrast recurrent activity has never been demonstrated before in higher order modality non-specific regions. Using magneto-encephalography and Granger causality analysis, we tested in a paralimbic network the hypothesis that stimulation may enhance causal recurrent interaction between higher-order, modality non-specific regions. The network includes anterior cingulate/medial prefrontal and posterior cingulate/medial parietal cortices together with pulvinar thalami, a network known to be effective in autobiographic memory retrieval and self-awareness. Autobiographic memory retrieval of previous personal judgments of visually presented words was used as stimuli. It is demonstrated that the prestimulus condition is characterized by causal, recurrent oscillations which are maximal in the lower gamma range. When retrieving previous judgments of visually presented adjectives, this activity is dramatically increased during the stimulus task as ascertained by Granger causality analysis. Our results confirm the hypothesis that stimulation may enhance causal interaction between higher order, modality non-specific brain regions, exemplified in a network of autobiographical memory retrieval

    Observation of associated near-side and away-side long-range correlations in √sNN=5.02  TeV proton-lead collisions with the ATLAS detector

    Get PDF
    Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02  TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1  Όb-1 of data as a function of transverse momentum (pT) and the transverse energy (ÎŁETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∌0) correlation that grows rapidly with increasing ÎŁETPb. A long-range “away-side” (Δϕ∌π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ÎŁETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ÎŁETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos⁥2Δϕ modulation for all ÎŁETPb ranges and particle pT

    Genetic Dissection of the Canq1 Locus Governing Variation in Extent of the Collateral Circulation

    Get PDF
    <div><h3>Background</h3><p>Native (pre-existing) collaterals are arteriole-to-arteriole anastomoses that interconnect adjacent arterial trees and serve as endogenous bypass vessels that limit tissue injury in ischemic stroke, myocardial infarction, coronary and peripheral artery disease. Their extent (number and diameter) varies widely among mouse strains and healthy humans. We previously identified a major quantitative trait locus on chromosome 7 (<em>Canq1</em>, LOD = 29) responsible for 37% of the heritable variation in collateral extent between C57BL/6 and BALB/c mice. We sought to identify candidate genes in <em>Canq1</em> responsible for collateral variation in the cerebral pial circulation, a tissue whose strain-dependent variation is shared by similar variation in other tissues.</p> <h3>Methods and Findings</h3><p>Collateral extent was intermediate in a recombinant inbred line that splits <em>Canq1</em> between the C57BL/6 and BALB/c strains. Phenotyping and SNP-mapping of an expanded panel of twenty-one informative inbred strains narrowed the <em>Canq1</em> locus, and genome-wide linkage analysis of a SWRxSJL-F2 cross confirmed its haplotype structure. Collateral extent, infarct volume after cerebral artery occlusion, bleeding time, and re-bleeding time did not differ in knockout mice for two vascular-related genes located in <em>Canq1</em>, <em>IL4ra</em> and <em>Itgal</em>. Transcript abundance of 6 out of 116 genes within the 95% confidence interval of <em>Canq1</em> were differentially expressed >2-fold (p-value<0.05Ă·150) in the cortical <em>pia mater</em> from C57BL/6 and BALB/c embryos at E14.5, E16.5 and E18.5 time-points that span the period of collateral formation.</p> <h3>Conclusions</h3><p>These findings refine the <em>Canq1</em> locus and identify several genes as high-priority candidates important in specifying native collateral formation and its wide variation.</p> </div
    • 

    corecore