318 research outputs found

    Exposed and buried guanosine residues in tRNA1Val from yeast

    Get PDF

    DĂ©jĂ  vu phenomenon-related EEG pattern. Case report

    Get PDF
    AbstractBackgroundDĂ©jĂ  vu (DV, from French dĂ©jĂ  vu — “already seen”) is an aberration of psychic activity associated with transitory erroneous perception of novel circumstances, objects, or people as already known.ObjectiveThis study aimed to record the EEG pattern of dĂ©jĂ  vu.MethodsThe subjects participated in a survey concerning dĂ©jĂ  vu characteristics and underwent ambulatory EEG monitoring (12–16h).ResultsIn patients with epilepsy, DV episodes began with polyspike activity in the right temporal lobe region and, in some cases, ended with slow-wave theta–delta activity over the right hemisphere. There were no epileptic discharges in healthy respondents during DV.ConclusionTwo types of dĂ©jĂ  vu are suggested to exist: “pathological-epileptic” dĂ©jĂ  vu, characteristic of patients with epilepsy and equivalent to an epileptic seizure, and “nonpathological-nonepileptic” dĂ©jĂ  vu, which is characteristic of healthy people and psychological phenomenon

    Novel amphiphilic compounds effectively inactivate the vaccinia virus

    Get PDF
    AbstractRecent studies demonstrated the ability of artificial ribonucleases (aRNases, small organic RNA cleaving compounds) to inactivate RNA-viruses via the synergetic effect of viral RNA cleavage and disruption of viral envelope [1,2]. Herein, we describe the antiviral activity of aRNases against DNA-containing vaccinia virus: screening of aRNases of various structures revealed that amphiphilic compounds built of positively charged 1,4-diazabicyclo[2.2.2] octane substituted at the bridge nitrogen atoms with aliphatic residues efficiently inactivate this virus. The first stage was the destruction of viral membrane and structure of surface proteins (electron microscopy data). Thus, 1,4-diazabicyclo[2.2.2] octane-based aRNases are novel universal agents inactivating both RNA- and DNA-containing viruses

    Structural Evolution and Phase Transformation in Nanoquasicrystalline Al-Fe-Cr Alloy: DSC Analysis

    Get PDF
    Kinetic parameters for microstructural evolution and phase transformation in water atomized Al-Fe-Cr based alloy with nominal composition Al94Fe3Cr3 have been examined by means of developed precise method of DSC technique and confirmed by the results of XRD analysis. Two exothermic reactions including that with a maximum at 380 – 400 degrees Celsius has been ascribed to dislocation reorganisation and recrystallisation process within the Al matrix although the main exothermic reaction with a maximum around 540 degrees Celsius arose from decomposition of icosahedral quasicrystalline particles and simultaneous formation of the metastable Al6Fe phase and more stable crystalline particles compositionally corresponded to the O-Al13Cr2 and O-Al13Fe4 phases. Activation energy for the main exothermic reaction has been found to be roughly about 53.1 kJ mol-1 which is significantly smaller than that for the bulk diffusion of either iron or chromium atoms in aluminium and very close to that for the vacancy migration. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/3485

    Thin film nanopores (V, 10Ti)NxHy hydrogen storages

    No full text
    This scientific paper delves into the findings of the investigation carried out to determine the adsorption and electrophysical characteristics of nanoporous (V, 10 at.% Ti)Nx films obtained using the ion beam-assisted deposition technique (IBAD). It has been shown that these films can accumulate more than 7 wt.% hydrogen at a relatively low pressure of 0,5 MPa. One part of it is accumulated in the grain boundaries and pores but another one forms the hydride phase. A complete release of hydrogen occurs at a temperature of 250 °C. During the hydrogen desorption the specific resistivity of (V, 10Ti)NxHy films is roughly increased by a factor of 10⁷.ПроĐČĐ”ĐŽĐ”ĐœŃ‹ Ń€Đ”Đ·ŃƒĐ»ŃŒŃ‚Đ°Ń‚Ń‹ ĐžŃŃĐ»Đ”ĐŽĐŸĐČĐ°ĐœĐžĐč Đ°ĐŽŃĐŸŃ€Đ±Ń†ĐžĐŸĐœĐœŃ‹Ń… Đž ŃĐ»Đ”ĐșŃ‚Ń€ĐŸŃ„ĐžĐ·ĐžŃ‡Đ”ŃĐșох хараĐșтДрОстОĐș ĐœĐ°ĐœĐŸĐżĐŸŃ€ĐžŃŃ‚Ń‹Ń… ĐżĐ»Đ”ĐœĐŸĐș (V, 10 ат.% Ti)Nx, ĐżĐŸĐ»ŃƒŃ‡Đ”ĐœĐœŃ‹Ń… с ĐżŃ€ĐžĐŒĐ”ĐœĐ”ĐœĐžĐ”ĐŒ Ń‚Đ”Ń…ĐœĐŸĐ»ĐŸĐłĐžĐž ĐžĐŸĐœĐœĐŸ-ŃŃ‚ĐžĐŒŃƒĐ»ĐžŃ€ĐŸĐČĐ°ĐœĐœĐŸĐłĐŸ ĐŸŃĐ°Đ¶ĐŽĐ”ĐœĐžŃ. Đ˜ŃĐżĐŸĐ»ŃŒĐ·ĐŸĐČĐ°ĐœĐžĐ” ĐŽĐ°ĐœĐœĐŸĐč Ń‚Đ”Ń…ĐœĐŸĐ»ĐŸĐłĐžĐž ĐżĐŸĐ·ĐČĐŸĐ»ĐžĐ»ĐŸ ĐżĐŸĐ»ŃƒŃ‡ĐžŃ‚ŃŒ ĐœĐ°ĐœĐŸĐșрОсталлОчДсĐșую струĐșтуру, ĐŒĐ”Đ¶Đ·Đ”Ń€Đ”ĐœĐœĐŸĐ” ĐżŃ€ĐŸŃŃ‚Ń€Đ°ĐœŃŃ‚ĐČĐŸ ĐČ ĐșĐŸŃ‚ĐŸŃ€ĐŸĐč Đ·Đ°ĐżĐŸĐ»ĐœĐ”ĐœĐŸ ĐżĐŸŃ€Đ°ĐŒĐž Ń€Đ°Đ·ĐŒĐ”Ń€ĐŸĐŒ ĐŒĐ”ĐœĐ”Đ” 6 ĐœĐŒ. ĐŸĐŸĐșĐ°Đ·Đ°ĐœĐŸ, Ń‡Ń‚ĐŸ про ĐŸŃ‚ĐœĐŸŃĐžŃ‚Đ”Đ»ŃŒĐœĐŸ ĐœĐžĐ·ĐșĐŸĐŒ ĐŽĐ°ĐČĐ»Đ”ĐœĐžĐž (0,5 МПа) таĐșОД ĐŸĐ±ŃŠĐ”Đșты ĐŒĐŸĐłŃƒŃ‚ Đ°ĐșĐșŃƒĐŒŃƒĐ»ĐžŃ€ĐŸĐČать Đ±ĐŸĐ»Đ”Đ” 7 ĐČДс.% ĐČĐŸĐŽĐŸŃ€ĐŸĐŽĐ°. ĐžĐŽĐœĐ° часть Đ”ĐłĐŸ ĐœĐ°ĐșаплОĐČĐ°Đ”Ń‚ŃŃ ĐČ ĐŒĐ”Đ¶Đ·Đ”Ń€Đ”ĐœĐœŃ‹Ń… ĐłŃ€Đ°ĐœĐžŃ†Đ°Ń… Đž ĐżĐŸŃ€Đ°Ń…, Юругая часть – ĐČ ĐČОЎД ĐłĐžĐŽŃ€ĐžĐŽĐœĐŸĐč Ń„Đ°Đ·Ń‹. ĐŸĐŸĐ»ĐœĐŸĐ” ĐČŃ‹ĐŽĐ”Đ»Đ”ĐœĐžĐ” ĐČĐŸĐŽĐŸŃ€ĐŸĐŽĐ° ĐżŃ€ĐŸĐžŃŃ…ĐŸĐŽĐžŃ‚ про Ń‚Đ”ĐŒĐżĐ”Ń€Đ°Ń‚ŃƒŃ€Đ” 250 ÂșĐĄ. В ĐżŃ€ĐŸŃ†Đ”ŃŃĐ” ĐŽĐ”ŃĐŸŃ€Đ±Ń†ĐžĐž ĐČĐŸĐŽĐŸŃ€ĐŸĐŽĐ° ŃƒĐŽĐ”Đ»ŃŒĐœĐŸĐ” ŃĐ»Đ”ĐșŃ‚Ń€ĐŸŃĐŸĐżŃ€ĐŸŃ‚ĐžĐČĐ»Đ”ĐœĐžĐ” (V, 10Ti)NxHy-ĐżĐ»Đ”ĐœĐŸĐș уĐČДлОчОĐČĐ°Đ”Ń‚ŃŃ ĐżŃ€ĐžĐŒĐ”Ń€ĐœĐŸ ĐČ 10⁷ раз.ПроĐČĐ”ĐŽĐ”ĐœĐŸ ĐŽĐ°ĐœŃ– ĐŽĐŸŃĐ»Ń–ĐŽĐ¶Đ”ĐœŃŒ Đ°ĐŽŃĐŸŃ€Đ±Ń†Ń–ĐčĐœĐžŃ… та ДлДĐșŃ‚Ń€ĐŸŃ„Ń–Đ·ĐžŃ‡ĐœĐžŃ… хараĐșтДрОстОĐș (V, 10 ат.% Ti)Nx ĐœĐ°ĐœĐŸĐżĐŸŃ€ĐŸĐČох пліĐČĐŸĐș, Đ·ĐŽĐŸĐ±ŃƒŃ‚ĐžŃ… Đ·Đ° ĐŽĐŸĐżĐŸĐŒĐŸĐłĐŸŃŽ Ń‚Đ”Ń…ĐœĐŸĐ»ĐŸĐłŃ–Ń— Ń–ĐŸĐœĐœĐŸ-ŃŃ‚ĐžĐŒŃƒĐ»ŃŒĐŸĐČĐ°ĐœĐŸĐłĐŸ ĐŸŃĐ°ĐŽĐ¶Đ”ĐœĐœŃ. ВоĐșĐŸŃ€ĐžŃŃ‚Đ°ĐœĐœŃ ĐŽĐ°ĐœĐŸŃ— Ń‚Đ”Ń…ĐœĐŸĐ»ĐŸĐłŃ–Ń— ĐŽĐŸĐ·ĐČĐŸĐ»ĐžĐ»ĐŸ стĐČĐŸŃ€ĐžŃ‚Đž ĐœĐ°ĐœĐŸĐșŃ€ĐžŃŃ‚Đ°Đ»Ń–Ń‡ĐœŃƒ струĐșтуру, ĐŒŃ–Đ¶Đ·Đ”Ń€Đ”ĐœĐœĐžŃ… ĐżŃ€ĐŸŃŃ‚Ń–Ń€ ĐČ ŃĐșіĐč Đ·Đ°ĐżĐŸĐČĐœĐ”ĐœĐžĐč ĐżĐŸŃ€Đ°ĐŒĐž Ń€ĐŸĐ·ĐŒŃ–Ń€ĐŸĐŒ ĐœĐ” Đ±Ń–Đ»ŃŒŃˆĐ” 6 ĐœĐŒ. ВояĐČĐ»Đ”ĐœĐŸ, Ń‰ĐŸ про ĐČŃ–ĐŽĐœĐŸŃĐœĐŸ ĐœĐžĐ·ŃŒĐșĐŸĐŒŃƒ тосĐșу (0,5 МПа) таĐșі ĐŸĐ±â€™Ń”Đșто ĐŒĐŸĐ¶ŃƒŃ‚ŃŒ Đ°ĐșŃƒĐŒŃƒĐ»ŃŽĐČато Đ±Ń–Đ»ŃŒŃˆ ĐœŃ–Đ¶ 7 ĐČĐ°Đł.% ĐČĐŸĐŽĐœŃŽ. ĐžĐŽĐœĐ° ĐčĐŸĐłĐŸ Ń‡Đ°ŃŃ‚ĐžĐœĐ° ĐœĐ°ĐșĐŸĐżĐžŃ‡ŃƒŃ”Ń‚ŃŒŃŃ у ĐŒŃ–Đ¶Đ·Đ”Ń€Đ”ĐœĐœĐŸĐŒŃƒ ĐżŃ€ĐŸŃŃ‚ĐŸŃ€Ń–, Đ° Ń–ĐœŃˆĐ° – у ĐČĐžĐłĐ»ŃĐŽŃ– ĐłŃ–ĐŽŃ€ĐžĐŽĐœĐŸŃ— Ń„Đ°Đ·Đž. ĐŸĐŸĐČĐœĐ” ĐČĐžĐŽŃ–Đ»Đ”ĐœĐœŃ ĐČĐŸĐŽĐœŃŽ ĐŒĐ°Ń” ĐŒŃ–ŃŃ†Đ” про Ń‚Đ”ĐŒĐżĐ”Ń€Đ°Ń‚ŃƒŃ€Ń– 250 ÂșĐĄ. ĐŁ ĐżŃ€ĐŸŃ†Đ”ŃŃ– ĐŽĐ”ŃĐŸŃ€Đ±Ń†Ń–Ń— ĐČĐŸĐŽĐœŃŽ ĐżĐžŃ‚ĐŸĐŒĐžĐč ДлДĐșŃ‚Ń€ĐŸĐŸĐżŃ–Ń€ (V, 10Ti)NxHy-пліĐČĐŸĐș Đ·Đ±Ń–Đ»ŃŒŃˆŃƒŃ”Ń‚ŃŒŃŃ ĐżŃ€ĐžĐ±Đ»ĐžĐ·ĐœĐŸ у 10⁷ разіĐČ

    Formation of initial changes in hemodynamics and fluid compartments in high surgical risk patients under the influence of acute abdominal pathology

    Get PDF
    Among the main factors of pathological changes that accompany acute abdominal pathology are the inflammatory process of the peritoneum and fluid deficiency due to its pathological losses. The aim of our study was to analyze the initial state of fluid compartments of the body and hemodynamics in high surgical risk patients with acute surgical abdominal pathology. There were examined 157 patients with acute abdominal pathology who underwent emergency laparotomy. The presence and severity of fluid deficiency were determined clinically by tissue hydrophilicity test by P.I. Shelestiuk, biochemically – by assessing the levels of hematocrit, hemoglobin, erythrocytes, blood electrolytes, vasopressin (antidiuretic hormone (ADH)) and brain natriuretic propeptide (proBNP), as well as the mean erythrocyte volume and plasma osmolarity. Variables of fluid compartments of the body and central hemodynamics were studied using the non-invasive bioimpedancemetry. Based on the values of oxygen concentration in arterial and venous blood, total oxygen consumption (VO 2 ) and delivery of oxygen (DO 2 ), oxygen extraction ratio (O 2 ER) were calculated. The detected changes indicate intravascular fluid deficiency and concomitant hemoconcentration with normal electrolytes levels and plasma osmolarity. In patients with high surgical risk and moderate dehydration according to P.I. Shelestiuk, urgent surgical pathology of the abdominal cavity reduces extracellular fluid volume by 19.1% (p=0.019) of the reference by reducing the volume of the interstitium and intravascular fluid respectively by 20.7% (p=0.002) and 16.3% (p=0.001) of regional values, which forms in patients a state of "volume depletion" of moderate severity. This is accompanied by an increase in the ADH concentration by 16.7% (p=0.041) above reference and normal proBNP levels. Stroke volume decreases by 28.8% (p=0.021) against tachycardia (increase in heart rate by 39.7% (p=0.001) above normal) and vascular spasm (increase in systemic vascular resistance by 86.9% (p=0.001) above reference), which supports the normodynamic type of blood circulation (cardiac index – 3.2 (0.4) l/min/m 2 ) with the decrease in stroke index and peripheral perfusion index by 41.3% (p=0.002) and 55.2% (p=0.002) from reference, respectively. DO 2 decreases by 11.1% (p=0.011) from reference with VO 2 increased by 16.3% (p=0.004) above reference, which leads to a decrease in oxygen utilization by 7.2% (p=0.041) from reference. ХДрДЎ ĐłĐŸĐ»ĐŸĐČĐœĐžŃ… Ń‡ĐžĐœĐœĐžĐșіĐČ ĐżĐ°Ń‚ĐŸĐ»ĐŸĐłŃ–Ń‡ĐœĐžŃ… Đ·ĐŒŃ–Đœ, Ń‰ĐŸ ŃŃƒĐżŃ€ĐŸĐČĐŸĐŽĐ¶ŃƒŃŽŃ‚ŃŒ ĐłĐŸŃŃ‚Ń€Ńƒ Đ°Đ±ĐŽĐŸĐŒŃ–ĐœĐ°Đ»ŃŒĐœŃƒ ĐżĐ°Ń‚ĐŸĐ»ĐŸĐłŃ–ŃŽ, ĐČĐžĐŽŃ–Đ»ŃŃŽŃ‚ŃŒ Đ·Đ°ĐżĐ°Đ»ŃŒĐœĐžĐč ĐżŃ€ĐŸŃ†Đ”Ń ĐŸŃ‡Đ”Ń€Đ”ĐČĐžĐœĐž та ЎДфіцОт Ń€Ń–ĐŽĐžĐœĐž ĐČĐœĐ°ŃĐ»Ń–ĐŽĐŸĐș її ĐżĐ°Ń‚ĐŸĐ»ĐŸĐłŃ–Ń‡ĐœĐžŃ… ĐČтрат. ĐœĐ”Ń‚ĐŸŃŽ ĐœĐ°ŃˆĐŸĐłĐŸ ĐŽĐŸŃĐ»Ń–ĐŽĐ¶Đ”ĐœĐœŃ Đ±ŃƒĐ»ĐŸ ĐżŃ€ĐŸĐČДстО Đ°ĐœĐ°Đ»Ń–Đ· ĐČĐžŃ…Ń–ĐŽĐœĐŸĐłĐŸ ŃŃ‚Đ°ĐœŃƒ ĐČĐŸĐŽĐœĐžŃ… сДĐșŃ‚ĐŸŃ€Ń–ĐČ ĐŸŃ€ĐłĐ°ĐœŃ–Đ·ĐŒŃƒ та ĐłĐ”ĐŒĐŸĐŽĐžĐœĐ°ĐŒŃ–ĐșĐž ĐČ ĐżĐ°Ń†Ń–Ń”ĐœŃ‚Ń–ĐČ ĐČĐžŃĐŸĐșĐŸĐłĐŸ Ń…Ń–Ń€ŃƒŃ€ĐłŃ–Ń‡ĐœĐŸĐłĐŸ рОзОĐșу про ĐłĐŸŃŃ‚Ń€Ń–Đč Ń…Ń–Ń€ŃƒŃ€ĐłŃ–Ń‡ĐœŃ–Đč Đ°Đ±ĐŽĐŸĐŒŃ–ĐœĐ°Đ»ŃŒĐœŃ–Đč ĐżĐ°Ń‚ĐŸĐ»ĐŸĐłŃ–Ń—. Đ‘ŃƒĐ»ĐŸ ĐŸĐ±ŃŃ‚Đ”Đ¶Đ”ĐœĐŸ 157 ĐżĐ°Ń†Ń–Ń”ĐœŃ‚Ń–ĐČ Đ· ĐłĐŸŃŃ‚Ń€ĐŸŃŽ Đ°Đ±ĐŽĐŸĐŒŃ–ĐœĐ°Đ»ŃŒĐœĐŸŃŽ ĐżĐ°Ń‚ĐŸĐ»ĐŸĐłŃ–Ń”ŃŽ, яĐșі ĐżĐŸŃ‚Ń€Đ”Đ±ŃƒĐČалО Đ”ĐșŃŃ‚Ń€Đ”ĐœĐŸŃ— Đ»Đ°ĐżĐ°Ń€ĐŸŃ‚ĐŸĐŒŃ–Ń—. НаяĐČĐœŃ–ŃŃ‚ŃŒ та ŃŃ‚ŃƒĐżŃ–ĐœŃŒ ĐŽĐ”Ń„Ń–Ń†ĐžŃ‚Ńƒ Ń€Ń–ĐŽĐžĐœĐž ĐČĐžĐ·ĐœĐ°Ń‡Đ°Đ»ĐžŃŃ ĐșĐ»Ń–ĐœŃ–Ń‡ĐœĐŸ Đ·Đ° ĐżŃ€ĐŸĐ±ĐŸŃŽ ĐœĐ° ĐłŃ–ĐŽŃ€ĐŸŃ„Ń–Đ»ŃŒĐœŃ–ŃŃ‚ŃŒ тĐșĐ°ĐœĐžĐœ Đ·Đ° П.І. КДлДстюĐșĐŸĐŒ, Đ»Đ°Đ±ĐŸŃ€Đ°Ń‚ĐŸŃ€ĐœĐŸ – Đ·Đ° ĐŽĐŸĐżĐŸĐŒĐŸĐłĐŸŃŽ ĐŸŃ†Ń–ĐœĐșĐž ріĐČĐœŃ–ĐČ ĐłĐ”ĐŒĐ°Ń‚ĐŸĐșроту, ДлДĐșŃ‚Ń€ĐŸĐ»Ń–Ń‚Ń–ĐČ ĐșŃ€ĐŸĐČі, ĐČĐ°Đ·ĐŸĐżŃ€Đ”ŃĐžĐœŃƒ (Đ°ĐœŃ‚ĐžĐŽŃ–ŃƒŃ€Đ”Ń‚ĐžŃ‡ĐœĐŸĐłĐŸ ĐłĐŸŃ€ĐŒĐŸĐœŃƒ (АДГ)) та ĐŒĐŸĐ·ĐșĐŸĐČĐŸĐłĐŸ ĐœĐ°Ń‚Ń€Ń–ĐčŃƒŃ€Đ”Ń‚ĐžŃ‡ĐœĐŸĐłĐŸ ĐżŃ€ĐŸĐżĐ”ĐżŃ‚ĐžĐŽŃƒ (МНП), Đ° таĐșĐŸĐ¶ ŃĐ”Ń€Đ”ĐŽĐœŃŒĐŸĐłĐŸ ĐŸĐ±â€™Ń”ĐŒŃƒ Đ”Ń€ĐžŃ‚Ń€ĐŸŃ†ĐžŃ‚Đ° та ĐŸŃĐŒĐŸĐ»ŃŃ€ĐœĐŸŃŃ‚Ń– ĐżĐ»Đ°Đ·ĐŒĐž. ĐœĐ”Ń‚ĐŸĐŽĐŸĐŒ ĐœĐ”Ń–ĐœĐČĐ°Đ·ĐžĐČĐœĐŸŃ— Đ±Ń–ĐŸŃ–ĐŒĐżĐ”ĐŽĐ°ĐœŃĐŸĐŒĐ”Ń‚Ń€Ń–Ń— ĐČĐžĐČчалО ĐżĐŸĐșĐ°Đ·ĐœĐžĐșĐž ĐČĐŸĐŽĐœĐžŃ… сДĐșŃ‚ĐŸŃ€Ń–ĐČ ĐŸŃ€ĐłĐ°ĐœŃ–Đ·ĐŒŃƒ та Ń†Đ”ĐœŃ‚Ń€Đ°Đ»ŃŒĐœĐŸŃ— ĐłĐ”ĐŒĐŸĐŽĐžĐœĐ°ĐŒŃ–ĐșĐž. На ĐŸŃĐœĐŸĐČі ĐżĐŸĐșĐ°Đ·ĐœĐžĐșіĐČ ĐșĐŸĐœŃ†Đ”ĐœŃ‚Ń€Đ°Ń†Ń–Ń— ĐșĐžŃĐœŃŽ ĐČ Đ°Ń€Ń‚Đ”Ń€Ń–Đ°Đ»ŃŒĐœŃ–Đč та ĐČĐ”ĐœĐŸĐ·ĐœŃ–Đč ĐșŃ€ĐŸĐČі Ń€ĐŸĐ·Ń€Đ°Ń…ĐŸĐČуĐČалО Đ·Đ°ĐłĐ°Đ»ŃŒĐœĐ” ŃĐżĐŸĐ¶ĐžĐČĐ°ĐœĐœŃ (VO2) та ĐŽĐŸŃŃ‚Đ°ĐČĐșу ĐșĐžŃĐœŃŽ (DO2), ĐșĐŸĐ”Ń„Ń–Ń†Ń–Ń”ĐœŃ‚ Đ”ĐșстраĐșції ĐșĐžŃĐœŃŽ (О2ЕR). ВояĐČĐ»Đ”ĐœŃ– Đ·ĐŒŃ–ĐœĐž сĐČіЮчать ĐżŃ€ĐŸ ЎДфіцОт ĐČĐœŃƒŃ‚Ń€Ń–ŃˆĐœŃŒĐŸŃŃƒĐŽĐžĐœĐœĐŸŃ— Ń€Ń–ĐŽĐžĐœĐž та ŃŃƒĐżŃƒŃ‚ĐœŃŽ ĐłĐ”ĐŒĐŸĐșĐŸĐœŃ†Đ”ĐœŃ‚Ń€Đ°Ń†Ń–ŃŽ ĐœĐ° тлі ĐœĐŸŃ€ĐŒĐ°Đ»ŃŒĐœĐŸĐłĐŸ ĐČĐŒŃ–ŃŃ‚Ńƒ ДлДĐșŃ‚Ń€ĐŸĐ»Ń–Ń‚Ń–ĐČ Ń‚Đ° ĐŸŃĐŒĐŸĐ»ŃŃ€ĐœĐŸŃŃ‚Ń– ĐżĐ»Đ°Đ·ĐŒĐž. ĐŁ ĐżĐ°Ń†Ń–Ń”ĐœŃ‚Ń–ĐČ ĐČĐžŃĐŸĐșĐŸĐłĐŸ Ń…Ń–Ń€ŃƒŃ€ĐłŃ–Ń‡ĐœĐŸĐłĐŸ рОзОĐșу Đ· 2 ŃŃ‚ŃƒĐżĐ”ĐœĐ”ĐŒ ЎДгіЎратації Đ·Đ° П. І. КДлДстюĐșĐŸĐŒ ĐœĐ”ĐČіЮĐșĐ»Đ°ĐŽĐœĐ° Ń…Ń–Ń€ŃƒŃ€ĐłŃ–Ń‡ĐœĐ° ĐżĐ°Ń‚ĐŸĐ»ĐŸĐłŃ–Ń ĐŸŃ€ĐłĐ°ĐœŃ–ĐČ Ń‡Đ”Ń€Đ”ĐČĐœĐŸŃ— ĐżĐŸŃ€ĐŸĐ¶ĐœĐžĐœĐž Đ·ĐŒĐ”ĐœŃˆŃƒŃ” ĐŸĐ±â€™Ń”ĐŒ Ń€Ń–ĐŽĐžĐœĐž ĐżĐŸĐ·Đ°ĐșĐ»Ń–Ń‚ĐžĐœĐœĐŸĐłĐŸ ĐżŃ€ĐŸŃŃ‚ĐŸŃ€Ńƒ ĐœĐ° 19,1% (p=0,019) ĐČіЮ ĐœĐŸŃ€ĐŒĐž Đ·Đ° Ń€Đ°Ń…ŃƒĐœĐŸĐș Đ·ĐœĐžĐ¶Đ”ĐœĐœŃ ĐŸĐ±â€™Ń”ĐŒŃ–ĐČ Ń–ĐœŃ‚Đ”Ń€ŃŃ‚ĐžŃ†Ń–ŃŽ та ĐČĐœŃƒŃ‚Ń€Ń–ŃˆĐœŃŒĐŸŃŃƒĐŽĐžĐœĐœĐŸŃ— Ń€Ń–ĐŽĐžĐœĐž ĐČŃ–ĐŽĐżĐŸĐČŃ–ĐŽĐœĐŸ ĐœĐ° 20,7% (p=0,002) та 16,3% (p=0,001) ĐČіЮ Ń€Đ”ĐłŃ–ĐŸĐœĐ°Đ»ŃŒĐœĐžŃ… ĐżĐŸĐșĐ°Đ·ĐœĐžĐșіĐČ, Ń‰ĐŸ Ń„ĐŸŃ€ĐŒŃƒŃ” ĐČ ĐżĐ°Ń†Ń–Ń”ĐœŃ‚Ń–ĐČ ŃŃ‚Đ°Đœ Â«ĐŸĐ±â€™Ń”ĐŒĐœĐŸĐłĐŸ ĐČĐžŃĐœĐ°Đ¶Đ”ĐœĐœŃÂ» ŃĐ”Ń€Đ”ĐŽĐœŃŒĐŸĐłĐŸ ŃŃ‚ŃƒĐżĐ”ĐœŃ Ń‚ŃĐ¶ĐșĐŸŃŃ‚Ń–. ĐŠĐ” ŃŃƒĐżŃ€ĐŸĐČĐŸĐŽĐ¶ŃƒŃ”Ń‚ŃŒŃŃ Đ·Đ±Ń–Đ»ŃŒŃˆĐ”ĐœĐœŃĐŒ ĐșĐŸĐœŃ†Đ”ĐœŃ‚Ń€Đ°Ń†Ń–Ń— АДГ ĐœĐ° 16,7% (p=0,041) ĐżĐŸĐœĐ°ĐŽ ĐœĐŸŃ€ĐŒŃƒ про ĐœĐŸŃ€ĐŒĐ°Đ»ŃŒĐœĐŸĐŒŃƒ ріĐČĐœŃ– МНП. ĐŁĐŽĐ°Ń€ĐœĐžĐč ĐŸĐ±'Ń”ĐŒ Đ·ĐœĐžĐ¶ŃƒŃ”Ń‚ŃŒŃŃ ĐœĐ° 28,8% (р=0,021) ĐČіЮ ĐœĐŸŃ€ĐŒĐž ĐœĐ° тлі тахіĐșарЮії (Đ·Đ±Ń–Đ»ŃŒŃˆĐ”ĐœĐœŃ ЧХХ ĐœĐ° 39,7% (р=0,001) ĐżĐŸĐœĐ°ĐŽ ĐœĐŸŃ€ĐŒŃƒ) та ŃŃƒĐŽĐžĐœĐœĐŸĐłĐŸ ŃĐżĐ°Đ·ĐŒŃƒ (піЮĐČĐžŃ‰Đ”ĐœĐœŃ Đ·Đ°ĐłĐ°Đ»ŃŒĐœĐŸĐłĐŸ ĐżĐ”Ń€ĐžŃ„Đ”Ń€ĐžŃ‡ĐœĐŸĐłĐŸ ĐŸĐżĐŸŃ€Ńƒ ŃŃƒĐŽĐžĐœ ĐœĐ° 86,9% (p=0,001) ĐżĐŸĐœĐ°ĐŽ ĐșĐŸĐœŃ‚Ń€ĐŸĐ»ŃŒĐœŃ– ĐżĐŸĐșĐ°Đ·ĐœĐžĐșĐž), Ń‰ĐŸ ĐżŃ–ĐŽŃ‚Ń€ĐžĐŒŃƒŃ” ĐœĐŸŃ€ĐŒĐŸĐŽĐžĐœĐ°ĐŒŃ–Ń‡ĐœĐžĐč топ ĐșŃ€ĐŸĐČĐŸĐŸĐ±Ń–ĐłŃƒ (сДрцДĐČĐžĐč Ń–ĐœĐŽĐ”Đșс – 3,2 (0,4) Đ»/хĐČ/ĐŒ2) ĐœĐ° тлі Đ·ĐœĐžĐ¶Đ”ĐœĐœŃ ŃƒĐŽĐ°Ń€ĐœĐŸĐłĐŸ та ĐżĐ”Ń€ĐžŃ„Đ”Ń€ĐžŃ‡ĐœĐŸĐłĐŸ ĐżĐ”Ń€Ń„ŃƒĐ·Ń–ĐčĐœĐŸĐłĐŸ Ń–ĐœĐŽĐ”ĐșсіĐČ ĐČŃ–ĐŽĐżĐŸĐČŃ–ĐŽĐœĐŸ ĐœĐ° 41,3% (p=0,002) та 55,2% (p=0,002) ĐČіЮ ĐœĐŸŃ€ĐŒĐž. DO2 Đ·ĐœĐžĐ¶ŃƒŃ”Ń‚ŃŒŃŃ ĐœĐ° 11,1% (p=0,011) ĐČіЮ ĐœĐŸŃ€ĐŒĐž про піЮĐČĐžŃ‰Đ”ĐœĐŸĐŒŃƒ ĐœĐ° 16,3% (p=0,004) ĐżĐŸĐœĐ°ĐŽ ĐœĐŸŃ€ĐŒŃƒ VO2, Ń‰ĐŸ прОзĐČĐŸĐŽĐžŃ‚ŃŒ ĐŽĐŸ Đ·ĐœĐžĐ¶Đ”ĐœĐœŃ ŃƒŃ‚ĐžĐ»Ń–Đ·Đ°Ń†Ń–Ń— ĐșĐžŃĐœŃŽ ĐœĐ° 7,2% (p=0,041) ĐČіЮ ĐœĐŸŃ€ĐŒĐž

    Unconstrained Hamiltonian Formulation of SU(2) Gluodynamics

    Full text link
    SU(2) Yang-Mills field theory is considered in the framework of the generalized Hamiltonian approach and the equivalent unconstrained system is obtained using the method of Hamiltonian reduction. A canonical transformation to a set of adapted coordinates is performed in terms of which the Abelianization of the Gauss law constraints reduces to an algebraic operation and the pure gauge degrees of freedom drop out from the Hamiltonian after projection onto the constraint shell. For the remaining gauge invariant fields two representations are introduced where the three fields which transform as scalars under spatial rotations are separated from the three rotational fields. An effective low energy nonlinear sigma model type Lagrangian is derived which out of the six physical fields involves only one of the three scalar fields and two rotational fields summarized in a unit vector. Its possible relation to the effective Lagrangian proposed recently by Faddeev and Niemi is discussed. Finally the unconstrained analog of the well-known nonnormalizable groundstate wave functional which solves the Schr\"odinger equation with zero energy is given and analysed in the strong coupling limit.Comment: 20 pages REVTEX, no figures; final version to appear in Phys. Rev. D; minor changes, notations simplifie

    The COMPASS Experiment at CERN

    Get PDF
    The COMPASS experiment makes use of the CERN SPS high-intensitymuon and hadron beams for the investigation of the nucleon spin structure and the spectroscopy of hadrons. One or more outgoing particles are detected in coincidence with the incoming muon or hadron. A large polarized target inside a superconducting solenoid is used for the measurements with the muon beam. Outgoing particles are detected by a two-stage, large angle and large momentum range spectrometer. The setup is built using several types of tracking detectors, according to the expected incident rate, required space resolution and the solid angle to be covered. Particle identification is achieved using a RICH counter and both hadron and electromagnetic calorimeters. The setup has been successfully operated from 2002 onwards using a muon beam. Data with a hadron beam were also collected in 2004. This article describes the main features and performances of the spectrometer in 2004; a short summary of the 2006 upgrade is also given.Comment: 84 papes, 74 figure

    Measurement of the polarisation of W bosons produced with large transverse momentum in pp collisions at sqrt(s) = 7 TeV with the ATLAS experiment

    Get PDF
    This paper describes an analysis of the angular distribution of W->enu and W->munu decays, using data from pp collisions at sqrt(s) = 7 TeV recorded with the ATLAS detector at the LHC in 2010, corresponding to an integrated luminosity of about 35 pb^-1. Using the decay lepton transverse momentum and the missing transverse energy, the W decay angular distribution projected onto the transverse plane is obtained and analysed in terms of helicity fractions f0, fL and fR over two ranges of W transverse momentum (ptw): 35 < ptw < 50 GeV and ptw > 50 GeV. Good agreement is found with theoretical predictions. For ptw > 50 GeV, the values of f0 and fL-fR, averaged over charge and lepton flavour, are measured to be : f0 = 0.127 +/- 0.030 +/- 0.108 and fL-fR = 0.252 +/- 0.017 +/- 0.030, where the first uncertainties are statistical, and the second include all systematic effects.Comment: 19 pages plus author list (34 pages total), 9 figures, 11 tables, revised author list, matches European Journal of Physics C versio
    • 

    corecore