646 research outputs found

    A study of the feasibility of using sea and wind information from the ERS-1 satellite. Part 1: Wind scatterometer data

    Get PDF
    The use of scatterometer and altimeter data in wind and wave assimilation, and the benefits this offers for quality assurance and validation of ERS-1 data were examined. Real time use of ERS-1 data was simulated through assimilation of Seasat scatterometer data. The potential for quality assurance and validation is demonstrated by documenting a series of substantial problems with the scatterometer data, which are known but took years to establish, or are new. A data impact study, and an analysis of the performance of ambiguity removal algorithms on real and simulated data were conducted. The impact of the data on analyses and forecasts is large in the Southern Hemisphere, generally small in the Northern Hemisphere, and occasionally large in the Tropics. Tests with simulated data give more optimistic results than tests with real data. Errors in ambiguity removal results occur in clusters. The probabilities which can be calculated for the ambiguous wind directions on ERS-1 contain more information than is given by a simple ranking of the directions

    The Relative Humidity in an Isentropic Advection–Condensation Model: Limited Poleward Influence and Properties of Subtropical Minima

    Get PDF
    An idealized model of advection and condensation of water vapor is considered as a representation of processes influencing the humidity distribution along isentropic surfaces in the free troposphere. Results are presented for how the mean relative humidity distribution varies in response to changes in the distribution of saturation specific humidity and in the amplitude of a tropical moisture source. Changes in the tropical moisture source are found to have little effect on the relative humidity poleward of the subtropical minima, suggesting a lack of poleward influence despite much greater water vapor concentrations at lower latitudes. The subtropical minima in relative humidity are found to be located just equatorward of the inflection points of the saturation specific humidity profile along the isentropic surface. The degree of mean subsaturation is found to vary with the magnitude of the meridional gradient of saturation specific humidity when other parameters are held fixed. The atmospheric relevance of these results is investigated by comparison with the positions of the relative humidity minima in reanalysis data and by examining poleward influence of relative humidity in simulations with an idealized general circulation model. It is suggested that the limited poleward influence of relative humidity may constrain the propagation of errors in simulated humidity fields

    The variational Bayesian approach to fitting mixture models to circular wave direction data

    Get PDF
    The emerging variational Bayesian (VB) technique for approximate Bayesian statistical inference is a nonsimulation- based and time-efficient approach. It provides a useful, practical alternative to other Bayesian statistical approaches such as Markov chain Monte Carlo–based techniques, particularly for applications involving large datasets. This article reviews the increasingly popular VB statistical approach and illustrates how it can be used to fit Gaussian mixture models to circular wave direction data. This is done by taking the straightforward approach of padding the data; this method involves adding a repeat of a complete cycle of the data to the existing dataset to obtain a dataset on the real line. The padded dataset can then be analyzed using the standard VB technique. This results in a practical, efficient approach that is also appropriate for modeling other types of circular, or directional, data such as wind direction

    Erroneous arctic temperature trends in the ERA-40 reanalysis: A closer look

    Get PDF
    © Copyright 2011 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be “fair use” under Section 107 of the U.S. Copyright Act September 2010 Page 2 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Act (17 USC §108, as revised by P.L. 94-553) does not require the AMS’s permission. Republication, systematic reproduction, posting in electronic form, such as on a web site or in a searchable database, or other uses of this material, except as exempted by the above statement, requires written permission or a license from the AMS. Additional details are provided in the AMS Copyright Policy, available on the AMS Web site located at (http://www.ametsoc.org/) or from the AMS at 617-227-2425 or [email protected] reanalyses can be useful tools for examining climate variability and change; however, they must be used cautiously because of time-varying biases that can induce artificial trends. This study explicitly documents a discontinuity in the 40-yr European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-40) that leads to significantly exaggerated warming in the Arctic mid- to lower troposphere, and demonstrates that the continuing use of ERA-40 to study Arctic temperature trends is problematic. The discontinuity occurs in 1997 in response to refined processing of satellite radiances prior to their assimilation into the reanalysis model. It is clearly apparent in comparisons of ERA-40 output against satellite-derived air temperatures, in situ observations, and alternative reanalyses. Decadal or multidecadal Arctic temperature trends calculated over periods that include 1997 are highly inaccurate, particularly below 600 hPa. It is shown that ERA-40 is poorly suited to studying Arctic temperature trends and their vertical profile, and conclusions based upon them must be viewed with extreme caution. Consequently, its future use for this purpose is discouraged. In the context of the wider scientific debate on the suitability of reanalyses for trend analyses, the results show that a series of alternative reanalyses are in broad-scale agreement with observations. Thus, the authors encourage their discerning use instead of ERA-40 for examining Arctic climate change while also reaffirming the importance of verifying reanalyses with observations whenever possibl

    Late Little Ice Age palaeoenvironmental records from the Anzali and Amirkola Lagoons (south Caspian Sea): Vegetation and sea level changes

    Get PDF
    This is a postprint version of the article. The official published article can be found from the link below - Copyright @ 2011 Elsevier Ltd.Two internationally important Ramsar lagoons on the south coast of the Caspian Sea (CS) have been studied by palynology on short sediment cores for palaeoenvironmental and palaeoclimatic investigations. The sites lie within a small area of very high precipitation in a region that is otherwise dry. Vegetation surveys and geomorphological investigations have been used to provide a background to a multidisciplinary interpretation of the two sequences covering the last four centuries. In the small lagoon of Amirkola, the dense alder forested wetland has been briefly disturbed by fire, followed by the expansion of rice paddies from AD1720 to 1800. On the contrary, the terrestrial vegetation reflecting the diversity of the Hyrcanian vegetation around the lagoon of Anzali remained fairly complacent over time. The dinocyst and non-pollen palynomorph assemblages, revealing changes that have occurred in water salinity and water levels, indicate a high stand during the late Little Ice Age (LIA), from AD < 1620 to 1800–1830. In Amirkola, the lagoon spit remained intact over time, whereas in Anzali it broke into barrier islands during the late LIA, which merged into a spit during the subsequent sea level drop. A high population density and infrastructure prevented renewed breaking up of the spit when sea level reached its maximum (AD1995). Similar to other sites in the region around the southern CS, these two lagoonal investigations indicate that the LIA had a higher sea level as a result of more rainfall in the drainage basin of the CS.The coring and the sedimentological analyses were funded by the Iranian National Institute for Oceanography in the framework of a research project entitled “Investigation of the Holocene sediment along the Iranian coast of Caspian Sea: central Guilan”. The radiocarbon date of core HCGL02 was funded by V. Andrieu (Europôle Méditerranéen de l'Arbois, France) and that of core HCGA04 by Brunel University

    Estimation of evaporation over the upper Blue Nile basin by combining observations from satellites and river flow gauges

    Get PDF
    Reliable estimates of regional evapotranspiration are necessary to improve water resources management and planning. However, direct measurements of evaporation are expensive and difficult to obtain. Some of the difficulties are illustrated in a comparison of several satellite-based estimates of evapotranspiration for the Upper Blue Nile (UBN) basin in Ethiopia. These estimates disagree both temporally and spatially. All the available data products underestimate evapotranspiration leading to basin-scale mass balance errors on the order of 35 percent of the mean annual rainfall. This paper presents a methodology that combines satellite observations of rainfall, terrestrial water storage as well as river-flow gauge measurements to estimate actual evapotranspiration over the UBN basin. The estimates derived from these inputs are constrained using a one-layer soil water balance and routing model. Our results describe physically consistent long-term spatial and temporal distributions of key hydrologic variables, including rainfall, evapotranspiration, and river-flow. We estimate an annual evapotranspiration over the UBN basin of about 2.55 mm per day. Spatial and temporal evapotranspiration trends are revealed by dividing the basin into smaller subbasins. The methodology described here is applicable to other basins with limited observational coverage that are facing similar future challenges of water scarcity and climate change

    Decreasing intensity of open-ocean convection in the Greenland and Iceland seas

    Get PDF
    The air–sea transfer of heat and fresh water plays a critical role in the global climate system. This is particularly true for the Greenland and Iceland seas, where these fluxes drive ocean convection that contributes to Denmark Strait overflow water, the densest component of the lower limb of the Atlantic Meridional Overturning Circulation (AMOC). Here we show that the wintertime retreat of sea ice in the region, combined with different rates of warming for the atmosphere and sea surface of the Greenland and Iceland seas, has resulted in statistically significant reductions of approximately 20% in the magnitude of the winter air–sea heat fluxes since 1979. We also show that modes of climate variability other than the North Atlantic Oscillation (NAO) are required to fully characterize the regional air–sea interaction. Mixed-layer model simulations imply that further decreases in atmospheric forcing will exceed a threshold for the Greenland Sea whereby convection will become depth limited, reducing the ventilation of mid-depth waters in the Nordic seas. In the Iceland Sea, further reductions have the potential to decrease the supply of the densest overflow waters to the AMOC
    corecore