89 research outputs found

    Limiting the spread of disease through altered migration patterns

    Get PDF
    We consider a model for an epidemic in a population that occupies geographically distinct locations. The disease is spread within subpopulations by contacts between infective and susceptible individuals, and is spread between subpopulations by the migration of infected individuals. We show how susceptible individuals can act collectively to limit the spread of disease during the initial phase of an epidemic, by specifying the distribution that minimises the growth rate of the epidemic when the infectives are migrating so as to maximise the growth rate. We also give an explicit strategy that minimises the basic reproduction number, which is also shown be optimal in terms of the probability of extinction and total size of the epidemic

    Local approximation of a metapopulation's equilibrium

    Full text link
    We consider the approximation of the equilibrium of a metapopulation model, in which a finite number of patches are randomly distributed over a bounded subset Ω\Omega of Euclidean space. The approximation is good when a large number of patches contribute to the colonization pressure on any given unoccupied patch, and when the quality of the patches varies little over the length scale determined by the colonization radius. If this is the case, the equilibrium probability of a patch at zz being occupied is shown to be close to q1(z)q_1(z), the equilibrium occupation probability in Levins's model, at any point z∈Ωz \in \Omega not too close to the boundary, if the local colonization pressure and extinction rates appropriate to zz are assumed. The approximation is justified by giving explicit upper and lower bounds for the occupation probabilities, expressed in terms of the model parameters. Since the patches are distributed randomly, the occupation probabilities are also random, and we complement our bounds with explicit bounds on the probability that they are satisfied at all patches simultaneously

    Connecting deterministic and stochastic metapopulation models

    Get PDF
    In this paper, we study the relationship between certain stochastic and deterministic versions of Hanski's incidence function model and the spatially realistic Levins model. We show that the stochastic version can be well approximated in a certain sense by the deterministic version when the number of habitat patches is large, provided that the presence or absence of individuals in a given patch is influenced by a large number of other patches. Explicit bounds on the deviation between the stochastic and deterministic models are given.Comment: The final publication is available at Springer via http://dx.doi.org/10.1007/s00285-015-0865-

    A metapopulation model with Markovian landscape dynamics

    Full text link
    We study a variant of Hanski's incidence function model that allows habitat patch characteristics to vary over time following a Markov process. The widely studied case where patches are classified as either suitable or unsuitable is included as a special case. For large metapopulations, we determine a recursion for the probability that a given habitat patch is occupied. This recursion enables us to clarify the role of landscape dynamics in the survival of a metapopulation. In particular, we show that landscape dynamics affects the persistence and equilibrium level of the metapopulation primarily through its effect on the distribution of a local population's life span.Comment: This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0

    Impressions of the University of Queensland

    Get PDF

    The limiting behaviour of Hanski's incidence function metapopulation model

    Get PDF
    Hanski's incidence function model is one of the most widely used metapopulation models in ecology. It models the presence/absence of a species at spatially distinct habitat patches as a discrete-time Markov chain whose transition probabilities are determined by the physical landscape. In this analysis, the limiting behaviour of the model is studied as the number of patches increases and the size of the patches decreases. Two different limiting cases are identified depending on whether or not the metapopulation is initially near extinction. Basic properties of the limiting models are derived

    Interaction between habitat quality and an Allee-like effect in metapopulations

    Get PDF
    We construct a stochastic patch occupancy metapopulation model that incorporates variation in habitat quality and an Allee-like effect. Using some basic results from stochastic ordering, we investigate the effect of habitat degradation on the persistence of the metapopulation. In particular, we show that for a metapopulation with Allee-like effect habitat degradation can cause a dramatic decrease in the level of persistence while in the absence of an Allee-like effect this decrease is more gradual
    • …
    corecore