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ABSTRACT

The emerging variational Bayesian (VB) technique for approximate Bayesian statistical inference is a non-

simulation-based and time-efficient approach. It provides a useful, practical alternative to other Bayesian

statistical approaches such as Markov chain Monte Carlo–based techniques, particularly for applications

involving large datasets. This article reviews the increasingly popular VB statistical approach and illustrates

how it can be used to fit Gaussian mixture models to circular wave direction data. This is done by taking the

straightforward approach of padding the data; this method involves adding a repeat of a complete cycle of the

data to the existing dataset to obtain a dataset on the real line. The padded dataset can then be analyzed using

the standard VB technique. This results in a practical, efficient approach that is also appropriate for modeling

other types of circular, or directional, data such as wind direction.

1. Introduction

Mixture models provide a convenient, flexible way to

model data; a popular and often appropriate approach is

to fit a Gaussian mixture model (GMM;McLachlan and

Peel 2000). Amixturemodel provides a way to represent

a complicated density as a linear combination of simpler

densities, which are called the mixture components. The

parameters of these components are estimated as part of

a statistical analysis. In this paper, we describe the key

ideas of the increasingly popular variational Bayesian

(VB) method for Bayesian statistical inference; VB has

been shown to approximate Bayesian posterior distribu-

tions efficiently, and, in particular, it has been shown to be

very useful for fitting mixture models (McGrory and

Titterington 2007). This paper follows and reviews the

standard VB approach for modeling one-dimensional

data with GMMs that was described in McGrory and

Titterington (2007) (note that throughout we refer to

this as the VB-GMM algorithm). In addition, this ar-

ticle makes the contribution of describing how the stan-

dard VB approach can straightforwardly be applied to

the circular data problem of modeling wave directions by

using a data-padding approach. The ideas described here

are also more generally applicable to any circular data

problem—for example, modeling wind direction.

Our application involves analyzing hindcast wave di-

rection data; we focus on modeling daily mean wave

directions off the coast of Byron Bay in southeastern

Australia, over a period of 45 yr. The daily mean wave

directions are periodic observations mapped onto the

circle that take values between 0 and 2p. It is important

to take the circular characteristics of the wave direction

data into consideration when analyzing it. To seewhy this

is important, consider for instance the distance between

an observation at 0 and one just before 2p, on the circle

these observations are close to one another whereas on

the real line they are not (e.g., see Farrugia et al. 2009;
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Mahrt 2011; Weber 1997). This must be accounted for

when carrying out a statistical analysis of this type of

data. Data analysis of this kind is often referred to as

circular or directional statistics (Mardia and Jupp 2000;

Jammalamadaka and Sengupta 2001). There have been

numerous distributional models already proposed for

analyzing circular data, and the von Mises method, also

known as circular normal (Jammalamadaka and Sengupta

2001), is perhaps the most popular choice (McVinish

and Mengersen 2008). Fitting this type of model can be

very computationally demanding, however. Another

option is to use nonparametric kernel density estimation

based on the vonMises–Fisher kernel (Mardia and Jupp

2000, 277–278), but the results of the kernel approach

depend on the degree of smoothing and lack the inter-

pretability that may be critical for some applications. In

this paper, we propose tackling the circular data prob-

lem by using the more straightforward intuitive approach

of padding the repeated data at both ends (see Mardia

and Jupp 2000, p. 4) and then normalizing the resulting

models [i.e., f(x; 0 # x , 2p)]. In this way we create a

padded version of the original dataset that can be ana-

lyzed using standard methods for linear data analysis.

This means that we can then apply the VB-GMM ap-

proach to the padded dataset; VB is an approximate ap-

proach to Bayesian inference for this type of problem but

still allows us to obtain a very good fit to the data in a

muchmore time-efficient analysis than would be possible

using other more popular Bayesian approaches.

The VB approach to Bayesian inference is more effi-

cient in terms of both computation and storage require-

ments than most other Bayesian statistical approaches

such as the reversible jump Markov chain Monte Carlo

technique (RJMCMC; Richardson and Green 1997). In

addition, unlikeMonteCarlo–based approaches, VB does

not suffer from the label-switching problem when fit-

ting mixture models (see Celeux et al. 2000) or from the

difficulties with assessing convergence (McGrory and

Titterington 2007). In addition, because it is a Bayesian

method, VB suffers less from the overfitting and singu-

larity problems that persist in maximum likelihood (ML)

approaches (Attias 1999). Given that a central issue of

mixture modeling is the selection of a suitable number of

componentsk (McLachlan andPeel 2000), a key practical

advantage of VB over ML approaches is its ability to

automatically select k to give the ‘‘best’’ fit to the data

according to the variational approximation and to esti-

mate the model parameter values and their posterior

distributions at the same time. Standard VB-based al-

gorithms achieve this through the complexity reduction

property of the VB approximation; this property leads

to the progressive elimination of redundant components

that were specified in the initialmodel during convergence

(McGrory and Titterington 2007). Note that this implies

that the final k, kfinal, in themodel cannot be greater than

the initial specification of k, kinitial.

The useful automatic feature of the approximation has

been observed by many researchers (e.g., Attias 1999;

Corduneanu and Bishop 2001;McGrory and Titterington

2007). Its theoretical reasoning is still not well un-

derstood, however. Therefore, we point out that this at-

tributemight be viewed as a drawbackby some researchers

instead of an advantage. When using the standard VB al-

gorithm, there is the possibility that sometimes the selected

number of components k in the final model might vary

depending on how the scheme is initialized. This is one

limitation of using the standard approach, but it is part of

the nature of mixturemodeling that different fittedmodels

with different values of k can provide good representations

of the same dataset. More-advanced VB schemes have

been proposed, and, although we did not choose to do so

in this paper, these could be explored for this type of

application. Such schemes involve component splitting

that allows the number of mixture components to be in-

creased as well as decreased during the convergence of

the VB algorithm, thereby providing increased flexibility

[see Wu et al. (2012) and references therein for further

reading on component-splitting VB schemes].

In section 2 we describe the VB-GMM algorithm and

the data padding. In section 3 we describe our applica-

tion dataset, and in section 4 we present the results of

our analysis of it. Section 5 concludes the article.

2. VB-GMM algorithm

In a GMM, it is assumed that all k underlying distri-

butions (or components) of the mixture are Gaussian.

In the notation we adopt here, the mixture model den-

sity of an observation x 5 (x1, . . . , xn) on the real line

is then given by �k
j51wjN(x;mj, t

21
j ), where N() de-

notes a Gaussian density, k is the number of compo-

nents, and mj and t21
j correspond to the mean and

variance, respectively, of the jth component. Eachmixing

coefficient wj satisfies 0 # wj and �k
j51wj 5 1. In the

Bayesian framework, inference is based on the target

posterior distribution, p(u, z j x), where u denotes the

model parameters (m, t, w) and z 5 fzijg denotes the

missing component membership information of obser-

vation x. Note that the zijs are indicator variables such

that zij5 1 if observation xi belongs to the jth component

and zij 5 0 otherwise.

The target posterior is not analytically available in this

mixture model problem, as is generally the case, and

therefore it has to be estimated in the Bayesian inference

approach. The idea of theVB approach is to approximate

the target posterior by a variational distribution that we
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denote by q(u, zjx). It is assumed that this approximating

distribution factorizes over the model parameters u and

the missing variables z; this assumption means that we

can write q(u, zjx) 5 qu(ujx) 3 q(zjx). To obtain a good

approximation to the target, the distribution q(u, zjx) is
chosen to maximize the lower bound on the log marginal

likelihood. Note that this is equivalent to minimizing the

Kullback–Leibler (KL) divergence between the target

posterior and the variational approximating distribution.

This approach leads to tractable coupled expressions for

the variational posterior over the parameters that can be

iteratively updated to obtain convergence to a solution.

Convergence to at least a local minimum is guaranteed.

Carefully choosing the initialization settings for the al-

gorithmmakes it likely that the minimum that is found, if

not the global minimum, is sufficiently close to the global

minimum. In terms of how this compares with popular

alternative approaches for fitting mixtures, we note that it

is also the case with the well-known and popular classical

expectation–maximization approach that only local con-

vergence is guaranteed. Also, whereas if the algorithm is

run for long enough then in theory a Bayesian Markov

chain Monte Carlo (MCMC) approach should fully ex-

plore the posterior and converge to a global maximum,

in practice chains can become stuck in local minima, and

it can be difficult to assess just how long of a run is

required to reach convergence.

In the machine-learning literature, VB has been used

for performing approximate Bayesian inference since

the late 1990s, and we refer readers to Mackay (2003)

andBishop (2006) formore background on the approach.

Most of the papers on the subject of fitting GMMs with

VB (e.g., Attias 1999; Corduneanu and Bishop 2001;

McGrory and Titterington 2007) make similar prior as-

sumptions, but they differ in the form of the model hi-

erarchy used. As indicated previously, we follow the

model setting and algorithm described in McGrory

and Titterington (2007). Note that to apply this algo-

rithm to our circular data we have to first pad the data, as

we will describe later.

a. The standard VB-GMM algorithm
(McGrory and Titterington 2007)

We model the pattern as a mixture of k Gaussian

distributions with unknown means m 5 (m1, . . . , mk),

precisions t 5 (t1, . . . , tk), and mixing coefficients w 5
(w1, . . . , wk), such that

p(x, z j u)5P
n

i51
P
k

j51

[wjN(xi; mj, t
21
j )]zij ,

with the joint distribution being p(x, z, u) 5 p(x, zju)
p(w)p(mjt)p(t). We express our priors as

p(w)5Dirichlet[w;a
(0)
1 , . . . ,a

(0)
k ] ,

p(m j t)5P
k

j51

Nfmj;m
(0)
j , [b

(0)
j tj]

21g, and

p(t)5P
k

j51

gamma

�
tj;

1

2
y
(0)
j ,

1

2
s
(0)
j

�
,

with a(0), b(0), m(0), y(0), and s(0) being the hyper-

parameter values, which are chosen by the user. These

are the standard conjugate priors used in Bayesian

mixture modeling (Gelman et al. 2003). Using the lower

bound approximation, the posteriors are then

qw(w)5Dirichlet(w;a1, . . . ,ak) ,

qm j t(m j t)5P
k

j51

N[mj;mj, (bjtj)
21], and

qt(t)5P
k

j51

gamma

�
tj;

1

2
yj,

1

2
sj

�
.

The posterior parameters are iteratively updated as [see

McGrory and Titterington (2007) for further details]

aj 5a
(0)
j 1 �

n

i51

qij, bj 5b
(0)
j 1 �

n

i51

qij,

yj 5 y
(0)
j 1 �

n

i51

qij, mj 5
1

bj

�
b
(0)
j m

(0)
j 1 �

n

i51

qijxi

�
, and

sj 5s
(0)
j 1 �

n

i51

qijx
2
i 1b

(0)
j m

(0)2

j 2bjm
2
j ,

where expectations are given by E(mj) 5 mj, and

E(tj)5 yjs
21
j . Note that qij is the VB posterior proba-

bility that zij 5 1, and the update expression for this

quantity is given by

qij 5

exp

(
C(aj)2C

 
�
j
aj

!
1

1

2

�
C

�
1

2
gj

�
2 log

dj

2

�
2

1

2bj

2
gj

2dj
(xi 2mj)

2

)

gi
,

1752 JOURNAL OF APPL IED METEOROLOGY AND CL IMATOLOGY VOLUME 51



whereC is the digamma function and gi is a normalizing

constant. This expression is normalized so that for each

observation xi, the qijs sum to 1 over the js.

We can see that the updates for the qijs and for the

posterior parameters are a set of coupled expressions

(i.e., they each involve one another); therefore, they

must be solved iteratively. In other words, to imple-

ment this approach, the user must choose some initial

values for the number of components k, the hyper-

parameters, and the qijs and then proceed to alterna-

tively update the expressions given above for the qijs

and the parameters. The �n
i51qij for each component

j 5 1, . . . , k corresponds to the estimated number of

observations that belong to that component. As the

expressions are iteratively updated, if the estimated

number of observations for any component drops be-

low 1, then that component can be removed from the

algorithm. In this way, once convergence is reached,

only components that are estimated as being useful in

the model will remain. Once this alternative updating

of the expressions no longer changes the values, the

algorithm can be declared to have converged to give

the required parameter estimates for the fitted mixture

model and the number of components with their cor-

responding weights.

b. Padding the circular data to apply the standard
VB-GMM algorithm

In the approach we have just outlined, the observa-

tions x5 (x1, . . . , xn) are assumed to be on the real line.

If we have data that are measured on the circle, we have

to adjust them before we can use it. As mentioned, we

will take the straightforward approach of padding the

data by adding a repeat of a complete cycle of the data to

the existing dataset to obtain a dataset on the real line

(Mardia and Jupp 2000). Without padding, the data may

have modes located around 0 (or 2p) that would create

a problem when trying to model the data with an ap-

proach that assumes the data are on the real line. We

pad the data as follows. For each observed value xi,

where i 5 f1, . . . , ng,

if observation xi ,p

pi5 xi 1 2p ,

otherwise pi 5 xi2 2p .

This new set of padded observations fpig, i5 1, . . . , n,

corresponds to a complete repeated cycle of the original

data around the circle. The original data and the set of

padded data are then combined to produce the dataset

used in the VB-GMM analysis.

3. Wave direction data

Our application involves analyzing wave direction

data; in particular, we focus on wave directions off the

coast of Byron Bay in New South Wales (NSW), Aus-

tralia. There is significant interest in monitoring of waves

along the NSW coast because of their potentially dam-

aging impact on the coastline (e.g., Shand et al. 2010).

At Byron Bay, and in southeastern Australia generally,

waves typically propagate toward the coast from the east-

southeast to south (Goodwin 2005). Goodwin (2005) ex-

plains that this wave climate creates a longshore sand

transport system; therefore, the coastline stability in

southeastern Australia is closely related to temporal

changes in sand transport brought about by changes in

wave-driven currents. Temporal trends in NSW shore-

line recession have been observed during the last cen-

tury (Goodwin et al. 2010), and these trends have been

related to the interdecadal Pacific oscillation (IPO)

(Goodwin 2005). A deeper understanding of how factors

such as wave direction are related to shoreline stability is

important for the development of coastal management

strategies. In coastal management studies, the in-

vestigation of daily wave direction data changes over

time is of particular interest, and such information can

be also used in conjunction with other wave climate

statistics or storm data. The data-padding and mixture-

modeling approach we propose here provides a straight-

forward and time-efficient way to summarize and explore

daily wave direction data for such purposes.

Over the last few decades, monitoring of waves along

the NSW coast has been carried out through a network

of Datawell BV Waverider buoys stationed at various

points along the coast; one is moored off the coast of

Byron Bay. The Waverider data are only available from

1977 onward; therefore, to explore wave direction over

a much longer time period, we use daily mean wave di-

rection data that have been hindcast from the 40-yr

European Centre for Medium-Range Weather Fore-

casts (ECMWF) Re-Analysis (ERA-40) meteorological

dataset. The ERA-40 (Uppala et al. 2005) is a reanalysis

ofmeteorological observations spanning fromSeptember

1957 to August 2002. A description of the wave climate

hindcasting approach used to obtain the daily mean wave

direction data that we analyze in this article is given in

Goodwin et al. (2010).

The dataset comprises 16 315 daily mean wave direc-

tions corresponding to dates between 1 January 1958 and

31 August 2002. The mean wave directions are recorded

in degrees, which of course means that the data are cir-

cular in nature. To apply the VB approach to fit mixture

models to this data, we first have to preprocess it using the

padding approach that we outlined in section 2. After
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padding, we then have a sizable dataset comprising 32 630

data points.

4. Results

We illustrate the use of VB-GMM on padded circular

data by using the ideas described above to model the

circular daily mean wave direction data; we fit mixture

models to the data corresponding to each of the four

seasons across the entire study period and also to each

year of recordings. We initialized our algorithm with the

number of components k set at 20 because this is a larger

number than we would reasonably expect to be nec-

essary to adequately represent this type of data. As

FIG. 1. Plots of theGaussianmixturemodels that were fitted to the circular ByronBay dailymeanwave direction data

corresponding to each season. In the center of each figure, a rose diagram of the observed data is shown.

1754 JOURNAL OF APPL IED METEOROLOGY AND CL IMATOLOGY VOLUME 51



described above, superfluous components can be auto-

matically eliminated during the application of the VB

algorithm.

We found in our results that the mixture models fitted

to this data had between 8 and 16 components. Esti-

mation of a suitable number of components for a mix-

ture model is a central part of statistical inference about

them; we have to estimate a suitable number of com-

ponents to allow us to represent the data well. We found

in this application that the top threemost heavily weighted

components typically represent more than 80% of the

wave directions. Therefore, we concentrated on these

components when interpreting results; the total actual

number of components in the fit was not of particular

interest to us here. In this way we are interpreting the

modes of the wave directions. Often, studies examining

this type of data concentrate on interpreting the overall

mean of the wave direction instead. Sincewave direction

data are multimodal, however, the mean direction is a

less informative summary statistic than the modes pro-

vided by the mixture model.

The variational approach is guaranteed to converge at

least to a local minimumof theKL divergence. Carefully

choosing the initialization settings for the algorithm

makes it likely that the minimum found, if not the global

minimum, is sufficiently close to the global minimum.

The choice of initialization will depend on themodel; for

our application we took the approach of partitioning the

data, which involved assigning the initial component

membership of each observation according to which

nonoverlapped equal-width interval the observed value

has fallen into. We then initialized the algorithm on

the basis of this partitioning, and the priors used were

noninformative. This initialization is more informative

than simply randomly initializing the components, and,

given that weak prior information is used, it is reason-

able to expect that the algorithm will lead to a suitable

mixture classification of the observations in the poste-

rior. It has been our experience in simulated data experi-

mentation that this initialization approach works well.

Figure 1 shows theGaussianmixturemodels that were

fitted for each season, providing us with a statistical es-

timate of the wave directions at that site. Here, we can

see that, although the peak direction is fairly consistent

across the seasons, some seasonal slight variation is

observed. Table 1 reports the corresponding numerical

values of the fitted parameters of the three most heavily

weighted components for each season. Again, these

suggest that the peakwave direction does not vary greatly

across the summer, autumn, and winter seasons when we

consider data over the period of 45 yr. The peak direction

for spring appears to deviate slightly from the others; it

has been noted by Goodwin et al. (2010) that the annual

cycle in mean wave direction at Byron Bay is most vari-

able between IPO phases that occur during spring, and

this fact may be what is being reflected here.

For each year between 1958 and 2002, Fig. 2 plots the

estimated mean of the most heavily weighted compo-

nent of the mixture model fitted to the daily Byron Bay

mean wave direction data for that particular year. The

sizes of the plotted solid circles are proportional to the

sizes of the weightings of these heaviest components.

Figures 3–7 show the mixture models fitted to the data

recorded for each of the years in the study period. It is

interesting to see from these figures that there appears to

be much variability in wave directions from year to year.

This is in contrast to the seasonal fits, which were much

more homogeneous.We can observe that there is a large

proportion of years with similar directions, which would

be useful for forming coastal protection plans. The re-

sults we have obtained appear to be consistent with pre-

vious research in suggesting that the mean wave direction

TABLE 1. Means m, precisions t, and weights w of the first, sec-

ond, and third most heavily weighted components in the mixture

models fitted to the circular Byron Bay daily mean wave direction

data corresponding to each of the seasons. The means can lie be-

tween 0 and 2p on the circle.

Season

First Second Third

m t21/2 w m t21/2 w m t21/2 w

Spring 1.963 0.355 0.495 2.751 0.107 0.246 2.488 0.056 0.048

Summer 1.760 0.408 0.437 2.771 0.109 0.218 2.419 0.192 0.183

Autumn 1.717 0.398 0.472 2.761 0.109 0.266 2.410 0.179 0.098

Winter 1.754 0.420 0.491 2.785 0.097 0.184 2.466 0.187 0.172

FIG. 2. The estimated mean of the most heavily weighted com-

ponent of the mixture model fitted to the circular Byron Bay daily

mean wave direction data for each year between 1958 and 2002.

The sizes of the plotted solid circles are proportional to the sizes of

the weightings of these components.
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FIG. 3. Plots of the Gaussian mixture models that were fitted to the circular Byron Bay daily mean wave direction data corresponding to

the years 1958–66. In the center of each figure, a rose diagram of the observed data is shown.
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FIG. 4. As in Fig. 3, but for 1967–75.
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FIG. 5. As in Fig. 3, but for 1976–84.
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FIG. 6. As in Fig. 3, but for 1985–93.
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FIG. 7. As in Fig. 3, but for 1994–2002.
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is highly variable over time (Goodwin 2005). Goodwin

et al. (2010) state that historical analysis of shoreline

change in the Byron Bay area suggests that it responds

on an interannual to interdecadal period of time in phase

with variability in mean wave direction; therefore, inves-

tigation of this annual variation is important for managing

shoreline change.

This convenient analytical approach described here

can be applied quickly, meaning that it is feasible to

explore and compare various aspects of the recorded

data in this way. For example, one could fitmodels to the

wave directions observed during storm systems, or in dif-

ferent months, and then assess whether changes in the

fitted parameters appear to be occurring. The ease of

implementation means that such models can be fitted on a

very regular basis to allow ongoing monitoring of varia-

tions in observations, as required. This technique will also

be useful in other application areas for which circular data

are observed, for example, in measuring wind direction.

Other commonly used approaches for fitting mixture

models include the classical expectation–maximization

(EM) algorithm approach and Bayesian MCMC-based

approaches. If we were to use an EM approach for this

application, it would be necessary to fit the model sep-

arately for a range of values of k and then to use a se-

lection criterion to select the most appropriate model.

Note that, dependent upon the selection criterion used,

the choice of dimension for the model would vary,

however. This approach would be far more time con-

suming than using the VB method in which both k and

model parameters are estimated simultaneously. The

RJMCMC algorithm of Richardson and Green (1997)

can be used to simultaneously estimate k and model

parameters. When implementing Bayesian MCMC-based

approaches for mixture models, including RJMCMC,

however, the well-known label-switching problem [see

Jasra et al. (2005) for a discussion] makes inference

about posterior parameters difficult. It is necessary to

impose artificial identifiability constraints in the sampler

to alleviate the label-switching problemwhen estimating

the parameters, but imposing these constraints becomes

increasingly challenging as the dimensionality of the

model increases. Another commonly used approach is

to postprocess the output from anMCMC algorithm; for

example, this is the approach used in the R software

package routine ‘‘AKMix’’ described in Komrek (2009).

We also note that, although MCMC approaches have

the attraction that in theory if the chains are run for long

enough they should fully explore the posterior, in practice

chains can become stuck in local minima and extremely

long runs may be required to reach convergence. It can

also be difficult to assess whether convergence has been

reached. For these reasons, MCMC-based approaches

are more time consuming to implement than the VB

method for this application.

To provide an indication of the difference in imple-

mentation speed when using the VB approach described

here and using the RJMCMC approach, we used AKMix

to fit a mixture model via RJMCMC to the circular wave

direction data that were observed in spring. There were

4004 recorded observations corresponding to the spring

season in our dataset. After padding the data to account

for its circular nature, the number of observations to be

analyzed was 8008. For illustration we note that fitting

a mixture model to the spring data using AKMix to im-

plement RJMCMC, with 50 000 iterations and a burn-in

of 10 000 iterations, took 5.5 h on a standard desktop

personal computer. On top of this, further computing time

would be required to postprocess the results and obtain

the posterior estimates. Fitting a mixture using VB im-

plemented in the Matlab software package took under an

hour, which is significantly faster. We also note that the

implementation time of the VB algorithm could be re-

duced further if a more efficient programming language

such as C were used instead of Matlab.

5. Discussion

In this paper, we have reviewed the variational ap-

proach and shown how VB-GMM can be adapted for

use in modeling circular data by taking an approach in

which the data are padded at the edges. In doing so, we

have proposed an effective modeling approach for cir-

cular data that can be implemented quickly and easily

and that will be of particular value in settings in which

there are large volumes of data to be analyzed.

We also note that we restricted our attention here to

the standard VB algorithm in which components may

only be eliminated and not added. With this algorithm

it is possible to occasionally reach different solutions un-

der different initialization settings, as we discussed earlier.

Other types of VB algorithm have been proposed in the

literature, however. For example, component-splitting VB

schemes have been designed (see Wu et al. 2012 and ref-

erences therein). Such schemes allow the number of mix-

ture components to be increased aswell as decreasedduring

the convergence of the VB algorithm, thereby providing

increased flexibility. This use of a component-splitting

scheme could also be explored for this type of application.
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