47 research outputs found

    The influence of adult hip shape genetic variants on adolescent hip shape : Findings from a population-based DXA study

    Get PDF
    Acknowledgments: We are extremely grateful to all the families who took part in this study, the midwives for their help in recruiting them, and the whole ALSPAC team, which includes interviewers, computer and laboratory technicians, clerical workers, research scientists, volunteers, managers, receptionists, and nurses. The UK Medical Research Council and the Wellcome Trust (ref: 102215/2/13/2) and the University of Bristol provide core support for ALSPAC. A comprehensive list of grants funding is available on the ALSPAC website (http://www.bristol.ac.uk/alspac/external/documents /grant-acknowledgements.pdf). GWAS data was generated at Laboratory Corporation of America (LabCorp Holdings, Burlington, NC, USA) by 23andMe and small subset was also performed at Wellcome Sanger Institute to check data quality. MF was supported by a Wellcome Trust PhD studentship (ref: 105504/Z/14/Z). LP works in the Medical Research Council Integrative Epidemiology Unit at the University of Bristol which is supported by the Medical Research Council and the University of Bristol (MC_UU_00011/1). This publication is the work of the authors and MF will serve as guarantor for the contents of this paper. None of the funders had any influence on data collection, analysis, interpretation of the results, or writing of the paper.Peer reviewedPublisher PD

    Defining the genetic susceptibility to cervical neoplasia - a genome-wide association study

    Get PDF
    Funding: MAB was funded by a National Health and Medical Research Council (Australia) Senior Principal Research Fellowship. Support was also received from the Australian Cancer Research Foundation. JL holds a Tier 1 Canada Research Chair in Human Genome Epidemiology. The Seattle study was supported by the following grants: NIH, National Cancer Institute grants P01CA042792 and R01CA112512. Cervical Health Study (from which the NSW component was obtained) was funded by NHMRC Grant 387701, and CCNSW core grant. The Montreal study was funded by the Canadian Institutes of Health Research (grant MOP-42532) and sample processing was funded by the Reseau FRQS SIDA-MI. The Swedish Research Council, the Swedish Foundation for Strategic Research, the ALF/LUA research grant in Gothenburg and Umeå, the Lundberg Foundation, the Torsten and Ragnar Soderberg’s Foundation, the Novo Nordisk Foundation, and the European Commission grant HEALTH-F2-2008-201865-GEFOS, BBMRI.se, the Swedish Society of Medicine, the KempeFoundation (JCK-1021), the Medical Faculty of Umeå University, the County Council of Vasterbotten (Spjutspetsanslag VLL:159:33-2007). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscriptPeer reviewedPublisher PDFPublisher PD

    Interference with glycosaminoglycan-chemokine interactions with a probe to alter leukocyte recruitment and inflammation in vivo

    Get PDF
    In vivo leukocyte recruitment is not fully understood and may result from interactions of chemokines with glycosaminoglycans/GAGs. We previously showed that chlorite-oxidized oxyamylose/COAM binds the neutrophil chemokine GCP-2/CXCL6. Here, mouse chemokine binding by COAM was studied systematically and binding affinities of chemokines to COAM versus GAGs were compared. COAM and heparan sulphate bound the mouse CXC chemokines KC/CXCL1, MIP-2/CXCL2, IP-10/CXCL10 and I-TAC/CXCL11 and the CC chemokine RANTES/CCL5 with affinities in the nanomolar range, whereas no binding interactions were observed for mouse MCP-1/CCL2, MIP-1α/CCL3 and MIP-1β/CCL4. The affinities of COAM-interacting chemokines were similar to or higher than those observed for heparan sulphate. Although COAM did not display chemotactic activity by itself, its co-administration with mouse GCP-2/CXCL6 and MIP-2/CXCL2 or its binding of endogenous chemokines resulted in fast and cooperative peritoneal neutrophil recruitment and in extravasation into the cremaster muscle in vivo. These local GAG mimetic features by COAM within tissues superseded systemic effects and were sufficient and applicable to reduce LPS-induced liver-specific neutrophil recruitment and activation. COAM mimics glycosaminoglycans and is a nontoxic probe for the study of leukocyte recruitment and inflammation in vivo

    Increased Recruitment but Impaired Function of Leukocytes during Inflammation in Mouse Models of Type 1 and Type 2 Diabetes

    Get PDF
    BACKGROUND: Patients suffering from diabetes show defective bacterial clearance. This study investigates the effects of elevated plasma glucose levels during diabetes on leukocyte recruitment and function in established models of inflammation. METHODOLOGY/PRINCIPAL FINDINGS: Diabetes was induced in C57Bl/6 mice by intravenous alloxan (causing severe hyperglycemia), or by high fat diet (moderate hyperglycemia). Leukocyte recruitment was studied in anaesthetized mice using intravital microscopy of exposed cremaster muscles, where numbers of rolling, adherent and emigrated leukocytes were quantified before and during exposure to the inflammatory chemokine MIP-2 (0.5 nM). During basal conditions, prior to addition of chemokine, the adherent and emigrated leukocytes were increased in both alloxan- (62±18% and 85±21%, respectively) and high fat diet-induced (77±25% and 86±17%, respectively) diabetes compared to control mice. MIP-2 induced leukocyte emigration in all groups, albeit significantly more cells emigrated in alloxan-treated mice (15.3±1.0) compared to control (8.0±1.1) mice. Bacterial clearance was followed for 10 days after subcutaneous injection of bioluminescent S. aureus using non-invasive IVIS imaging, and the inflammatory response was assessed by Myeloperoxidase-ELISA and confocal imaging. The phagocytic ability of leukocytes was assessed using LPS-coated fluorescent beads and flow cytometry. Despite efficient leukocyte recruitment, alloxan-treated mice demonstrated an impaired ability to clear bacterial infection, which we found correlated to a 50% decreased phagocytic ability of leukocytes in diabetic mice. CONCLUSIONS/SIGNIFICANCE: These results indicate that reduced ability to clear bacterial infections observed during experimentally induced diabetes is not due to reduced leukocyte recruitment since sustained hyperglycemia results in increased levels of adherent and emigrated leukocytes in mouse models of type 1 and type 2 diabetes. Instead, decreased phagocytic ability observed for leukocytes isolated from diabetic mice might account for the impaired bacterial clearance

    Identification of novel loci associated with hip shape:a meta-analysis of genome-wide association studies

    Get PDF
    This study was funded by Arthritis Research UK project grant 20244, which also provided salary funding for DB and CVG. LP works in the MRC Integrative Epidemiology Unit, a UK MRC‐funded unit (MC_ UU_ 12013/4 & MC_UU_12013/5). ALSPAC: We are extremely grateful to all the families who took part in this study, the midwives for their help in recruiting them, and the whole ALSPAC team, which includes interviewers, computer and laboratory technicians, clerical workers, research scientists, volunteers, managers, receptionists, and nurses. ALSPAC data collection was supported by the Wellcome Trust (grants WT092830M; WT088806; WT102215/2/13/2), UK Medical Research Council (G1001357), and University of Bristol. The UK Medical Research Council and the Wellcome Trust (102215/2/13/2) and the University of Bristol provide core support for ALSPAC. Framingham Heart Study: The Framingham Osteoporosis Study is supported by grants from the National Institute of Arthritis, Musculoskeletal, and Skin Diseases and the National Institute on Aging (R01 AR41398, R01 AR 061162, R01 AR050066, and R01 AR061445). The analyses reflect intellectual input and resource development from the Framingham Heart Study investigators participating in the SNP Health Association Resource project. The Framingham Heart Study of the National Heart, Lung, and Blood Institute of the National Institutes of Health and Boston University School of Medicine were supported by the National Heart, Lung, and Blood Institute's Framingham Heart Study (N01‐HC‐25195) and its contract with Affymetrix, Inc., for genotyping services (N02‐HL‐6‐4278). Analyses reflect intellectual input and resource development from the Framingham Heart Study investigators participating in the SNP Health Association Resource (SHARe) project. A portion of this research was conducted using the Linux Cluster for Genetic Analysis (LinGA‐II) funded by the Robert Dawson Evans Endowment of the Department of Medicine at Boston University School of Medicine and Boston Medical Center. DK was also supported by Israel Science Foundation grant #1283/14. TDC and DR thank Dr Claire Reardon and the entire Harvard University Bauer Core facility for assistance with ATAC‐seq next generation sequencing. This work was funded in part by the Harvard University Milton Fund, NSF (BCS‐1518596), and NIH NIAMS (1R01AR070139‐01A1) to TDC. MrOS: The Osteoporotic Fractures in Men (MrOS) Study is supported by National Institutes of Health funding. The following institutes provide support: the National Institute on Aging (NIA), the National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), the National Center for Advancing Translational Sciences (NCATS), and NIH Roadmap for Medical Research under the following grant numbers: U01 AG027810, U01 AG042124, U01 AG042139, U01 AG042140, U01 AG042143, U01 AG042145, U01 AG042168, U01 AR066160, and UL1 TR000128. The National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS) provides funding for the MrOS ancillary study “Replication of candidate gene associations and bone strength phenotype in MrOS” under the grant number R01 AR051124. The National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS) provides funding for the MrOS ancillary study “GWAS in MrOS and SOF” under the grant number RC2 AR058973. SOF: The Study of Osteoporotic Fractures (SOF) is supported by National Institutes of Health funding. The National Institute on Aging (NIA) provides support under the following grant numbers: R01 AG005407, R01 AR35582, R01 AR35583, R01 AR35584, R01 AG005394, R01 AG027574, and R01 AG027576. TwinsUK: The study was funded by the Wellcome Trust; European Community's Seventh Framework Programme (FP7/2007‐2013). The study also receives support from the National Institute for Health Research (NIHR)‐funded BioResource, Clinical Research Facility, and Biomedical Research Centre based at Guy's and St Thomas’ NHS Foundation Trust in partnership with King's College London. SNP genotyping was performed by The Wellcome Trust Sanger Institute and National Eye Institute via NIH/CIDR. This study was also supported by the Australian National Health and Medical Research Council (project grants 1048216 and 1127156), the Sir Charles Gairdner Hospital RAC (SGW), and the iVEC/Pawsey Supercomputing Centre (project grants Pawsey0162 and Director2025 [SGW]). The salary of BHM was supported by a Raine Medical Research Foundation Priming Grant. The Umeå Fracture and Osteoporosis Study (UFO) is supported by the Swedish Research Council (K20006‐72X‐20155013), the Swedish Sports Research Council (87/06), the Swedish Society of Medicine, the Kempe‐Foundation (JCK‐1021), and by grants from the Medical Faculty of Umeå Unviersity (ALFVLL:968:22‐2005, ALFVL:‐937‐2006, ALFVLL:223:11‐2007, and ALFVLL:78151‐2009) and from the county council of Västerbotten (Spjutspetsanslag VLL:159:33‐2007). This publication is the work of the authors and does not necessarily reflect the views of any funders. None of the funders had any influence on data collection, analysis, interpretation of the results, or writing of the paper. DB will serve as the guarantor of the paper. Authors’ roles: Study conception and design: DAB, JSG, RMA, LP, DK, and JHT. Data collection: DJ, DPK, ESO, SRC, NEL, BHM, FMKW, JBR, SGW, TDC, BGF, DAL, CO, and UP‐L. Data analysis: DAB, DSE, FKK, JSG, FRS, CVG, RJB, RMA, SGW, EG, TDC, DR, and TB. Data interpretation: JSG, RMA, TDC, DR, DME, LP, DK, and JHT. Drafting manuscript: DAB and JHT. Revising manuscript content: JHT. All authors approved the final version of manuscript. DAB takes responsibility for the integrity of the data analysis.Peer reviewedPublisher PD

    Genetic Sharing with Cardiovascular Disease Risk Factors and Diabetes Reveals Novel Bone Mineral Density Loci.

    Get PDF
    Bone Mineral Density (BMD) is a highly heritable trait, but genome-wide association studies have identified few genetic risk factors. Epidemiological studies suggest associations between BMD and several traits and diseases, but the nature of the suggestive comorbidity is still unknown. We used a novel genetic pleiotropy-informed conditional False Discovery Rate (FDR) method to identify single nucleotide polymorphisms (SNPs) associated with BMD by leveraging cardiovascular disease (CVD) associated disorders and metabolic traits. By conditioning on SNPs associated with the CVD-related phenotypes, type 1 diabetes, type 2 diabetes, systolic blood pressure, diastolic blood pressure, high density lipoprotein, low density lipoprotein, triglycerides and waist hip ratio, we identified 65 novel independent BMD loci (26 with femoral neck BMD and 47 with lumbar spine BMD) at conditional FDR < 0.01. Many of the loci were confirmed in genetic expression studies. Genes validated at the mRNA levels were characteristic for the osteoblast/osteocyte lineage, Wnt signaling pathway and bone metabolism. The results provide new insight into genetic mechanisms of variability in BMD, and a better understanding of the genetic underpinnings of clinical comorbidity

    New genetic loci link adipose and insulin biology to body fat distribution.

    Get PDF
    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms

    Comparison of teaching the basic electrocardiographic concept of frontal plane QRS axis using the classical versus the orderly electrocardiogram limb lead displays

    No full text
    This study compares the effectiveness of teaching the calculation of frontal plane QRS axis with the use of the classical versus the orderly electrocardiographic limb lead display. Eighty-three students from two environments were randomized into two groups and were taught to determine frontal plane axis with one of the methods. The accuracy and time to determine the axis were tested on 10 electrocardiograms. In the United States the group using the classical display achieved 4.2 (+/-2.7) correct answers, whereas those using the orderly method achieved 6.8 (+/-3.0) (p = 0.0006). The classical group used 9.2 (+/-2.8) minutes to complete the test, whereas the orderly group needed 7.2 (+/-2.0) minutes (p = 0.015). The results achieved in Sweden were similar. The use of the orderly electrocardiographic limb lead display results in greater diagnostic accuracy in less time than the classical display when determining the frontal plane QRS axis
    corecore