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Montréal, QC, Canada, 15 Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska

Academy University of Gothenburg, Gothenburg, Sweden, 16 Centre for Bone and Arthritis Research,

Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden, 17 Regional

World Health Organisation Human Papillomavirus Laboratory Network, Department of Microbiology and

Infectious Diseases, The Royal Women’s Hospital, Parkville, Victoria, 3052, Australia, 18 Department of

Obstetrics and Gynaecology, University of Melbourne, Murdoch Childrens Research Institute, The Royal

Children’s Hospital, Parkville, Victoria, 3052, Australia, 19 Cancer Council NSW, Sydney, NSW, Australia,

20 Sydney School of Public Health, University of Sydney, Camperdown, NSW, Australia, 21 School of Public

Health and Community Medicine, University of New South Wales, Kensington, NSW, Australia, 22 School of

Epidemiology, Public Health and Preventive Medicine, Faculty of Medicine, University of Ottawa, Ottawa,

Canada, 23 Division of Medical Education, University of Aberdeen, Aberdeen, Scotland, 24 Faculty of

Medicine and Biomedical Sciences, University of Queensland, Translational Research Institute, Princess

Alexandra Hospital, Woolloongabba, QLD, 4102, Australia

☯ These authors contributed equally to this work.

‡ These authors also contributed equally to this work

* Matt.brown@qut.edu.au

Abstract

A small percentage of women with cervical HPV infection progress to cervical neoplasia,

and the risk factors determining progression are incompletely understood. We sought to

define the genetic loci involved in cervical neoplasia and to assess its heritability using unbi-

ased unrelated case/control statistical approaches. We demonstrated strong association

of cervical neoplasia with risk and protective HLA haplotypes that are determined by the

amino-acids carried at positions 13 and 71 in pocket 4 of HLA-DRB1 and position 156 in

HLA-B. Furthermore, 36% (standard error 2.4%) of liability of HPV-associated cervical pre-
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cancer and cancer is determined by common genetic variants. Women in the highest 10%

of genetic risk scores have approximately >7.1% risk, and those in the highest 5% have

approximately >21.6% risk, of developing cervical neoplasia. Future studies should examine

genetic risk prediction in assessing the risk of cervical neoplasia further, in combination with

other screening methods.

Author summary

Around 1% of women with cervical human papillomavirus (HPV) infection progress to

cervical cancer. Previous studies had indicated that a person’s genetic makeup could pre-

dispose to HPV-associated cervical cancer, and that some of the genes likely to be involved

include the immune-related human leukocyte antigen (HLA) genes among the major

histocompatibility complex (MHC). However, it has been difficult to determine which

alleles might be associated with cervical pre-cancer or cancer due to the complex and high

level of co-inheritance of MHC alleles. Here, we performed a genome-wide association

study that assessed the correlation of genetic variants among those with cervical cancer

and healthy controls. We show that host genetics is a major determinant of HPV-associ-

ated cervical cancer, with 36% of liability due to common genetic variants in the popula-

tion, and identify both risk and protective HLA alleles. Our study was also sufficiently

powerful to identify particular residue variants on a number of the immune-related pro-

teins that provide risk or protection, providing further insight into the biological basis for

cervical cancer development. Our findings could lay the foundation for screening for peo-

ple at increased risk of developing cancer following HPV infection, and aid in the treat-

ment and prognosis of cervical cancer.

Introduction

Cervical cancer remains a major cause of female mortality worldwide, particularly in develop-

ing countries that have limited screening programs [1]. Only a small fraction (~1%) of women

with cervical human papillomavirus (HPV) infection go on to develop cervical neoplasia [2],

and the factors determining risk of progression are incompletely understood. In the current

study we used the hypothesis-free genome-wide association study (GWAS) approach to iden-

tify genetic variants associated with cervical neoplasia. These variants may underlie disease

mechanisms and point to genetic markers of progression to cervical neoplasia.

A genetic contribution to the risk of HPV-associated cervical neoplasia is supported by sev-

eral lines of evidence. A family segregation study suggested that shared genes account for 27% of

cervical cancer heritability [3]. Also, persistent HPV infections are associated with the two

genetic conditions: epidermodysplasia verruciformis caused by mutations in the EVER1 and

EVER2 genes [4], and WHIM syndrome, associated with mutations in CXCR4 [5]. Furthermore,

genetic associations have been reported with HLA loci in cervical cancer in several studies using

HLA typing and genome-wide association study (GWAS) approaches. Specifically the haplotype

HLA-B�0702-DRB1�1501/HLADQB1�0602 is associated with increased disease risk, and reduced

risk is associated with alleles of the haplotype HLA-B�1501/HLA-DRB1�1301/HLA-DQA1�0103/
HLA-DQB1�0603 [6–10].

Resolving which alleles on these haplotypes are primarily associated with cervical pre-can-

cer and cancer is challenging due to the complex and extensive linkage disequilibrium that
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occurs across the major histocompatibility complex (MHC). Recently it has been suggested

that the haplotypic associations with HLA-B�0702 and HLA-DRB1�1501/HLA-DQB1�0602 are

largely driven by allelic variation in the MICA gene (rs67841474) and the effects of a SNP

nearby HLA-DRB1 that affects HLA-DRB1 expression (rs9272143) [9, 11]. Non-MHC associa-

tions with cervical cancer have also been reported with polymorphisms in a large number of

genes from candidate gene studies, including IRF3, TLR2, EXO1, CYBA, XRCC1 and FANCA
[12], OAS3, SULF1, IFNG, DUT, DMC1, GTF2H4 and EVER1/2 [13], ERAP1, LMP7 and TAP2
[14], TP53 [15], TERT [16] and IL17 [17]. However, none of these findings have achieved

genome-wide levels of significance, and as yet no non-MHC locus has been robustly associated

with cervical pre-cancer or cancer. GWAS have been reported for cervical cancer in Scandina-

vian [9], Chinese [18] and Japanese cohorts [19]. Two non-MHC associations were detected in

the Chinese study (rs13117307 at chromosome 4q12 within the gene EXOC1; rs8067378 at

chromosome 17q12 upstream of the gene GSDMB). We report here a GWAS aiming to define

genetic susceptibility to HPV-associated cervical neoplasia.

Results

Quality control

After quality control filters were applied, a total 2866 cases and 6481 controls remained. Details

of these and the cohorts from which they originated are provided in Table 1. These were geno-

typed or imputed for 10,863,230 SNPs. Using logistic regression including 4 principal compo-

nents as covariates, genome-wide association testing was performed. The genomic inflation

factor (1000) was 1.02 (Q-Q plot S1 Fig).

MHC findings

Genome-wide significant association was observed for multiple SNPs across the MHC on

chromosome 6p21.3 (Figs 1 and 2). Considering the MHC region in more detail, an analysis of

SNPs, imputed HLA alleles and amino-acid constituents of HLA alleles was performed. We

Table 1. Characteristics of cervical neoplasia cases in participating study populations following quality control steps.

Histology Behaviour HPV status

Studies Cases Controls Adeno-

carcinoma

Squamous

cell

carcinoma

Other In

Situ

Invasive HPV16 and

-18

HPV16 no

-18

HPV18 no

-16

Negative HPV16

and -18

Montreal 95 0 0 NA NA NA N/A N/A N/A N/A N/A

NCI [20] 194 0 97 88 N/A 57 137 N/A 38 14 93

NSW [21] 274 0 10 256 N/A 266 N/A 11 62 7 67

CerGe [22] 98 0 N/A N/A N/A N/A N/A N/A N/A N/A N/A

Seattle [7] 751 0 424 327 N/A 271 480 44 258 112 45

SUCCEED

[20]

314 0 11 65 238 213 76 17 195 18 N/A

TOMBOLA

[23]

324 0 N/A N/A N/A N/A N/A 16 115 15 177

Trimble[24] 94 0 N/A N/A N/A N/A N/A N/A N/A N/A N/A

Umea [25,

26]

722 1319 4 135 583 529 N/A N/A N/A N/A N/A

WTCCC [27] 0 5443 0 0 0 0 0 0 0 0 0

TOTALS 2866 6762 546 871 821 1336 693 88 668 166 382

N/A, not available.

https://doi.org/10.1371/journal.pgen.1006866.t001
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Fig 1. Manhattan plot of genome-wide association study of cervical neoplasia.

https://doi.org/10.1371/journal.pgen.1006866.g001

Fig 2. Zoom plot of the MHC showing association with cervical neoplasia. SNP associations are reported as filled-in dots, HLA amino-acid

associations as hollow diamonds (P-values are for omnibus test of association at specific amino-acid positions). Colours represent extent of linkage

disequilibrium with the HLA amino-acid(s) or SNP stated in the figure. (A) The linkage disequilibrium with amino acids at positions 13 and 71 that form part

of the p4-pocket of HLA-DRB1. Reading from the p-telomere the HLA loci at which amino-acid constituents have been imputed are HLA-A, -C, -B, -DRB1,

-DQA1, -DQB1, -DPA1 and–DPB1. Allele-specific HLA type associations are given in the right hand plot. (B) Cervical neoplasia MHC association results

having conditioned on amino acid positions 13 and 71 in HLA-DRB1. Linkage disequilibrium with the next largest association amino acid position 156 at

HLA-B is shown. (C) Cervical neoplasia MHC association results having conditioned on amino acid positions 13 and 17 in HLA-DRB1 and 156 in HLA-B.

No significant association remains.

https://doi.org/10.1371/journal.pgen.1006866.g002
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also directly compared imputation of HLA alleles from the GWAS data to high resolution

HLA genotypes, and found strong concordance between imputed two-digit HLA types and

variants (97.6%-99.4%), and slightly lower concordance for four-digit resolution (95.8–98.7%;

Table 2).

The strongest associated SNP, rs9271858 (OR = 7.44, P = 5.20 × 10−15), lies in the MHC

Class II region near HLA-DQA1�0102. This SNP is in strong linkage disequilibrium with

rs9272143 (r2 = 1). Conditioning this signal for the previously reported MICA5.1 and HLA-
DRB1-eQTL associations at rs67841474 and rs9272143, residual MHC association remained

(HLA-B�0702, OR = 1.22 P = 2.39 × 10−5; HLA-B�1501, OR = 0.62 P = 1.11 × 10−9; HLA-
DQB1�0602, OR = 1.29 P = 2.49 × 10−6; HLA-DRB1�1501, OR = 1.28 P = 8.61 × 10−6).

HLA risk alleles

Our analysis identifies two independent risk HLA-haplotypes, HLA-DRB1�15/HLA-DQB1�

0602/HLA-DQA1�0102 and HLA-DRB1�0401/HLA-DQA1�0301. Within each haplotype the

HLA alleles are in strong LD (Fig 3), whereby conditioning on any one of the HLA alleles con-

trols for the association signal at the other alleles.

Table 2. Accuracy of HLA typing by imputation compared with directly genotyped findings at two–and four-digit resolution.

HLA-B HLA-C HLA-DRB1 HLA-DQB1

Two-digit resolution 99.4 98.9 97.6 98.7

Four-digit resolution 98.7 98.2 96.7 95.8

https://doi.org/10.1371/journal.pgen.1006866.t002

Fig 3. Pairwise linkage disequilibrium (r2) plot of HLA alleles associated with cervical cancer. HLA alleles have been clustered

according to their pairwise linkage disequilibrium on both the x- and y-axes. On the left-hand y-axis they are labelled as to whether

they are risk or protective alleles in the overall cervical cancer dataset, and on the top x-axis according to whether they are HLA Class I

or II alleles.

https://doi.org/10.1371/journal.pgen.1006866.g003
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The strongest risk HLA-associations are seen with HLA-DQB1�0602 (OR = 1.44, P =
4.46 × 10−12, Table 3) and HLA-DRB1�1501 (OR = 1.43, P = 5.55 × 10−12). HLA-DQB1�0602 is

in positive linkage disequilibrium with the HLA Class II risk alleles HLA-DRB1�1501 (r2 =

0.93) and HLA-DQA1�0102 (r2 = 0.64), and in lower linkage disequilibrium with the HLA

Class I risk alleles HLA-C�0702 (r2 = 0.25) and HLA-B�0702 (r2 = 0.28; Fig 3). Controlling for

the association at HLA-DQB1�0602 or HLA-DRB1�1501 controls for the association at each of

the other HLA Class I or II alleles in these linkage disequilibrium blocks (P> 0.05), whereas

controlling for either or both of HLA-B�0702 or HLA-C�0702 leaves strong residual association

at both HLA-DQB1�0602 and HLA-DRB1�1501 (OR>1.3 P<1.5 × 10−5 all analyses). This

indicates that the primary association of this haplotype is best tagged by HLA-DRB1�1501/
HLA-DQB1�0602/HLA-DQA1�0102, and that the associations of HLA-B�0702/HLA-C�0702
are likely to be due to linkage disequilibrium rather than themselves being disease-causative.

Moving along the x axis of Fig 3, the second block of risk associations are seen at HLA-
DRB1�0401/HLA-DQA1�0301. In the uncontrolled analysis, nominal associations were ob-

served for each allele in Table 3 (HLA-DQA1�0301 (OR = 1.16, P = 2.80 × 10−4), HLA-DRB1�

0401 (OR = 1.24, P = 7.98 × 10−5)). Conditioning on the HLA-DQB1�0602 risk linkage disequi-

librium block strengthens these associations (HLA-DQA1�0301 to OR = 1.27, P = 2.4 × 10−7

and HLA-DRB1�0401 to OR = 1.25, P = 4.7 × 10−7). If both risk and protective alleles are used

Table 3. Conditional logistic regression analysis of imputed HLA alleles for the overall dataset for alleles scoring P<10−5 in either the primary anal-

ysis or after conditioning on stated variants.

Conditioned P-values

HLA Allele FRQ Odds

ratio

Unconditioned P-

values

DQB1*0602 DQB1*0603 B*15 B*15 /DQB1*0602/

DQB1*0603

DRB1*0401 rs2596560

C*03 0.153 0.82 4.03 × 10−5 0.00089 0.00022 0.32 0.61 1.03 × 10−6 0.16

C*0303 0.055 0.66 9.28 × 10−7 5.20 × 10−6 4.53 × 10−5 0.026 0.088 9.77 × 10−8 0.013

C*0702 0.170 1.26 2.40 × 10−7 0.082 1.19 × 10−6 1.14 × 10−5 0.22 4.84 × 10−8 0.51

B*07 0.162 1.32 1.90 × 10−9 0.011 1.30 × 10−8 1.78 × 10−7 0.041 2.72 × 10−10 0.15

B*0702 0.16 1.31 3.86 × 10−9 0.017 2.48 × 10−8 3.22 × 10−7 0.057 5.63 × 10−10 0.19

B*15 0.072 0.64 1.56 × 10−9 2.87 × 10−8 1.17 × 10−7 NA 1 1.17 × 10−13 0.028

B*1501 0.065 0.63 4.44 × 10−9 7.18 × 10−8 3.13 × 10−7 0.97 0.87 2.71 × 10−13 0.028

DRB1*04 0.206 1.17 0.00018 2.95 × 10−8 0.0028 1.50 × 10−6 7.35 × 10−9 0.28 0.12

DRB1*0401 0.119 1.24 7.13 × 10−5 1.00 × 10−7 0.00072 1.52 × 10−8 3.94 × 10−10 1 0.33

DRB1*13 0.106 0.69 1.13 × 10−9 2.96 × 10−7 0.0017 2.46 × 10−8 0.012 9.49 × 10−9 0.77

DRB1*1301 0.055 0.62 2.87 × 10−8 9.95 × 10−7 0.35 2.81 × 10−6 0.85 7.91 × 10−8 0.46

DRB1*15 0.153 1.42 1.40 × 10−11 0.99 4.73 × 10−10 4.58 × 10−10 0.94 2.62 × 10−14 0.062

DRB1*1501 0.14 1.43 5.55 × 10−12 NA 1.75 × 10−10 1.79 × 10−10 0.68 1.32 × 10−14 0.57

DQA1*01 0.402 0.97 0.40 2.28 × 10−7 0.00081 0.36 0.00036 0.52 0.20

DQA1*0102 0.205 1.25 2.59 × 10−6 0.066 2.33 × 10−5 3.30 × 10−5 0.037 9.56 × 10−9 0.15

DQA1*0103 0.061 0.63 3.36 × 10−8 1.33 × 10−6 0.35 2.54 × 10−6 0.59 1.17 × 10−7 0.35

DQA1*03 0.224 1.16 0.00027 3.51 × 10−8 0.0046 2.30 × 10−6 0.59 1.17 × 10−7 0.13

DQA1*0301 0.224 1.16 0.00027 3.51 × 10−8 0.0046 2.30 × 10−6 1.04 × 10−8 0.31 0.13

DQB1*03 0.344 1.08 0.051 1.56 × 10−5 0.41 0.0054 5.08 × 10−5 0.62 0.70

DQB1*0302 0.129 1.08 0.14 0.0068 0.37 0.0023 0.00046 0.68 0.40

DQB1*06 0.246 1.04 0.32 2.12 × 10−7 5.89 × 10−5 0.26 0.00046 0.68 0.60

DQB1*0602 0.141 1.44 4.46 × 10−12 NA 1.93 × 10−10 1.46 × 10−10 0.011 0.041 0.30

DQB1*0603 0.057 0.63 4.17 × 10−8 1.00 × 10−6 NA 3.65 × 10−6 1 1.16 × 10−14 0.36

FRQ, allele frequency in controls; NA, not analysed, as conditioned on.

https://doi.org/10.1371/journal.pgen.1006866.t003
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to condition (i.e., additionally including HLA-DQB1�0603 and HLA-B�15), the residual asso-

ciation with HLA-DQA1�0301 and HLA-DRB1�0401 becomes stronger still (both at P<1 ×
10−8). These two alleles are in moderate linkage disequilibrium with one another (r2 = 0.49),

but not with HLA-DQB1�0602,HLA-DQB1�0603 or HLA-B�15 (r2<0.05, all comparisons).

Controlling for either HLA-DRB1�0401 or HLA-DQA1�0301 controls for association at the

other allele (residual association P> 0.05), but significant associations remain at HLA-DQB1�

0602, and HLA-B�15 (residual associations OR>1.5 P<5 × 10−15). Controlling for HLA-DRB1�

0401,HLA-DQB1�0602,HLA-DQB1�0603, and HLA-B�15, no HLA allele or MHC SNP shows

any association (P> 0.005). This indicates that HLA-DQA1�0301 and HLA-DRB1�0401 tag a

further independent association for cervical neoplasia, and that no further major risk MHC

associations remain.

HLA protective alleles

The strongest protective association was seen with HLA-B�15 (OR = 0.64, P = 1.56 × 10−9),

driven primarily by the HLA-B�1501 allele which makes up 90% of HLA-B�15 alleles in this

dataset and is itself strongly associated with cervical neoplasia (OR = 0.63, P = 4.44 × 10−9).

HLA-C�0303which is in moderate LD with HLA-B�15 (r2 = 0.27) also shows protective associ-

ation (OR = 0.66, P = 9.28 × 10−7). Conditioning on HLA-B�15 completely controls for the

association at HLA-C�0303 (OR = 0.80, P = 0.03), whereas conditioning on HLA-C�0303 leaves

residual association at HLA-B�15 (OR = 0.7 P = 2.04 × 10−5), implying that the causative asso-

ciation is with HLA-B�15.

Reduced risk is also observed with the HLA Class II alleles HLA-DRB1�13 (OR = 0.62, P =
2.87 × 10−8), HLA-DQB1�0603 (OR = 0.63, P = 4.17 × 10−8), and HLA-DQA1�0103 (OR = 0.63,

P = 3.36 × 10−8). These three HLA Class II alleles are in strong positive linkage disequilibrium

with one another, but not with the protective HLA Class I alleles (Fig 3). Controlling for the

association at HLA-DQB1�0603, no residual association is seen at HLA-DQA1�0103 (OR =

0.77 P = 0.35), and only minor association is seen at HLA-DRB1�13 (OR = 0.77 P = 0.002), but

residual association remains at HLA-B�15 (OR = 0.68 P = 1.17 × 10−7) and HLA-C�0303
(OR = 0.71 P = 4.53 × 10−5). This indicates that there are separate protective associations with

the HLA Class II haplotype HLA-DRB1�13/HLA-DQB1�0603/HLA-DQA1�0103, and the HLA

Class I allele HLA-B�15, and that other protective allelic associations are likely to be due to

linkage disequilibrium with these associated variants.

Amino-acid associations

In unconditional analyses, associations with P<10−6 are observed with HLA-DRB1 amino

acid positions -25, -16, -1, 11, 12, 13, 32, 70, 71, 96, 133, 142, and 149 (relative to the reference

HLA-DRB1 sequence). At HLA-DQB1, associations at P<10−6 are seen with amino acid posi-

tion 9 and 30, and at HLA-DQA1 at amino acid positions 24, 41, and 130.

The strongest association observed in all analyses of SNPs, amino-acids and HLA types was

with amino-acid position 71 in HLA-DRB1 (with possible amino acids K, A, E, R, KA, KE, or

KR, P = 1.25 × 10−17; Table 4, Fig 2A). The amino-acids at this locus have a gradient of associa-

tion with cervical neoplasia risk, with the presence of alanine being associated with increased

risk of cervical neoplasia (OR = 1.42, P = 1.44 × 10−11), and of glutamic acid with reduced risk

of the disease (OR = 0.67, P = 2.57 × 10−11; S1 Table). Controlling for the association with

HLA-DRB1 amino acid 71 controls for the association (P> 0.0005) with all the HLA Class II

alleles except HLA-DRB1�0401 (P = 3.29 × 10−4) and HLA-DQA1�0501 (P = 4.17 × 10−4;

Table 4). Similarly, controlling for amino-acid position 13 in HLA-DRB1 controls for all asso-

ciations at imputed HLA Class II amino acids (conditioned P> 10−3), with the exceptions of

Cervical neoplasia—A genome-wide association study
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HLA-DQA1�0103 (conditioned P = 9.32 × 10−5) and HLA-DRB1�13 (conditioned P =
2.54 × 10−4; Table 4). Conditioning on both HLA-DRB1 amino acid 13 and 71 controls for all

HLA Class II (but not Class I) allele and amino acid associations (P> 0.03 for all HLA Class II

alleles and amino acids; Fig 2B). This suggests that these two amino-acids are of functional

importance in the mechanism by which HLA Class II alleles influence cervical neoplasia risk.

The side chains of these amino acids are part of pocket 4 of HLA-DRB1, which is defined by

positions 9, 13, 70, 71, 74 and 78. Serine (position 13) and glutamic acid (position 71) are asso-

ciated with reduced risk of cervical neoplasia, whilst histidine/arginine (position 13) and ala-

nine (position 71) are associated with increased risk (S2 Table).

Genome-wide significant HLA Class I association remains after conditioning on HLA-

DRB1 amino acids 13 and 71, with the strongest associated allele being HLA-B�15, for which

strong residual association is seen (P = 7.97 × 10−10). The strongest amino-acid association in

this analysis is with the amino-acid 156 in HLA-B (P = 9.82 × 10−10). Controlling for the asso-

ciation of this amino acid, only minor residual HLA or MHC SNP association is observed (P
> 0.0005; Table 4, Fig 2C).

Table 4. Conditional logistic regression analysis of imputed HLA amino acids at HLA-B position 156 (B_156), HLA-DRB1 position 13 (DRB1_13)

and 71 (DRB1_71).

Conditioned P-values

HLA Allele Unconditioned P-values DRB1_13 DRB1_71 DRB1_13, DRB1_71 B_156 DRB1_13, DRB1_71, B_156

B_156 9.97 × 10−16 8.20 × 10−12 1.078 × 10−7 9.82 × 10−10 1 1

DRB1_13 5.20 × 10−17 1 0.0066 1 2.30 × 10−13 1

DRB1_71 1.25 × 10−17 0.00059 1 1 1.12 × 10−9 1

C*03 4.03 × 10−5 1.016 × 10−5 0.0089 0.00022 0.47 0.71

C*0303 9.28 × 10−7 5.26 × 10−7 4.27 × 10−5 5.27 × 10−6 0.11 0.15

C*0702 2.40 × 10−7 0.16 0.067 0.12 0.12 0.097

B*07 1.90 × 10−9 0.028 0.0077 0.018 0.65 0.68

B*0702 3.86 × 10−9 0.040 0.012 0.026 0.53 0.43

B*15 1.56 × 10−9 1.24 × 10−10 7.63 × 10−8 7.97 × 10−10 0.28 0.31

B*1501 4.44 × 10−9 3.23 × 10−10 1.36 × 10−7 1.58 × 10−9 0.69 0.65

DRB1*04 0.00018 0.74 0.00061 0.83 4.09 × 10−7 0.74

DRB1*0401 7.13 × 10−5 0.062 0.00033 0.16 2.27 × 10−8 0.013

DRB1*13 1.13 × 10−9 0.00077 0.77 0.92 4.74 × 10−7 0.62

DRB1*1301 2.87 × 10−8 0.00025 0.14 0.15 7.50 × 10−6 0.52

DRB1*15 1.40 × 10−11 0.75 0.097 0.082 3.97 × 10−5 0.029

DRB1*1501 5.55 × 10−12 0.29 0.15 0.19 2.48 × 10−5 0.31

DQA1*01 0.40 0.0044 0.16 0.50 0.033 0.33

DQA1*0102 2.59 × 10−6 0.79 0.028 0.036 0.027 0.12

DQA1*0103 3.36 × 10−8 9.32 × 10−5 0.057 0.065 9.18 × 10−6 0.30

DQA1*03 0.00027 0.62 0.00093 0.73 4.68 × 10−7 0.54

DQA1*05 0.0058 0.024 0.00042 0.092 0.00008 0.025

DQA1*0301 0.00027 0.62 0.00093 0.73 4.68 × 10−7 0.54

DQB1*03 0.051 0.90 0.038 0.59 0.00079 0.78

DQB1*0302 0.14 0.018 0.31 0.036 0.00053 0.66

DQB1*06 0.32 0.0013 0.78 0.73 0.43 0.45

DQB1*0602 4.46 × 10−12 0.22 0.094 0.13 2.097 × 10−5 0.23

DQB1*0603 4.17 × 10−8 0.00020 0.11 0.12 8.018 × 10−6 0.45

https://doi.org/10.1371/journal.pgen.1006866.t004

Cervical neoplasia—A genome-wide association study

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1006866 August 14, 2017 8 / 20

https://doi.org/10.1371/journal.pgen.1006866.t004
https://doi.org/10.1371/journal.pgen.1006866


Associations with cervical cancer subtypes

Squamous cell carcinoma. Among the cases, 871 were known to have high-grade squamous

cell lesions or squamous cell carcinoma and 546 had in situ adenocarcinoma or adenocarcinoma.

Association findings for classical HLA loci for each histopathological type are presented in Table

5. For squamous cell carcinoma, the strongest risk HLA allele associations were seen with HLA-
DQB1�0602 (OR = 1.52, P = 1.47 × 10−7) and HLA-DRB1�1501 (OR = 1.50, P = 2.95 × 10−7). Con-

trolling for these associations, no further HLA associations were observed.

A reduced risk of squamous cell carcinoma was seen with both HLA Class I (HLA-B�15
(OR = 0.55, P = 4.78 × 10−6)) and HLA Class II alleles (HLA-DQA1�0103 (OR = 0.69, P =
0.006), HLA-DRB1�13 (OR = 0.71, P = 5.27 × 10−4), HLA-DQB1�0603 (OR = 0.69, P = 0.007)).

HLA-DQB1�0603 and HLA-DRB1�13, are, as mentioned above, in tight positive linkage dis-

equilibrium. Conditioning on HLA-DQB1�0603 left no residual association observed with

HLA-DRB1�13 (OR = 0.73 P = 0.03), although significant associations with reduced risk

remained at HLA-B�15 (OR = 1.44, P = 4.22 × 10−5). HLA-B�15 is not in linkage disequilibrium

with the HLA Class II risk alleles HLA-DQA1�0103,HLA-DRB1�13, or HLA-DQB1�0603
(r2<0.05 for each). This analysis thus demonstrates the existence of separate HLA Class I and

Class II haplotypes associated with reduced risk of squamous cell carcinoma. Finally, control-

ling for the amino acid positions 13 and 71 in HLA-DRB1, and position 156 in HLA-B, no

residual HLA allele or amino acid associations were observed (P> 0.001).

Table 5. HLA associations with cervical cancer histopathological type, and HPV genotype, for alleles scoring P<0.005 in at least one sub-analysis.

Squamous Cell

Carcinoma

Adenocarcinoma HPV16 HPV18

HLA Allele BP FRQ OR P-VALUE OR P-VALUE OR P-VALUE OR P-VALUE

A*03 30019970 0.1604 1.24 0.01 1.37 0.0031 1.25 0.022 1.16 0.41

A*0301 30019970 0.167 1.24 0.01 1.38 0.0028 1.25 0.021 1.16 0.41

C*03 31346171 0.1552 0.77 0.01 0.81 0.05 0.79 0.015 0.93 0.67

C*0303 31346171 0.0588 0.65 0.003 0.74 0.093 0.63 0.0076 0.58 0.098

C*0702 31346171 0.1641 1.20 0.01 1.4 2.10 × 10−4 1.3 0.0011 1.43 0.016

B*07 31431272 0.1542 1.27 8.61 × 10−4 1.48 2.80 × 10−5 1.43 1.58 × 10−5 1.44 0.016

B*0702 31431272 0.153 1.26 0.002 1.48 2.65 × 10−5 1.44 1.1 × 10−5 1.45 0.014

B*15 31431272 0.0772 0.55 4.77 × 10−6 0.732 0.039 0.47 4.24 × 10−6 1 0.95

B*1501 31431272 0.0696 0.53 5.61 × 10−6 0.72 0.043 0.47 1.61 × 10−5 0.99 0.96

B*39 31431272 0.0155 0.43 0.009 0.64 0.21 0.3 0.0031 1.26 0.61

DRB1*13 32660042 0.1108 0.71 5.27 × 10−4 0.54 1.83 × 10−5 0.7 0.0022 0.51 0.0058

DRB1*1301 32660042 0.0588 0.69 0.009 0.67 0.042 0.68 0.026 0.39 0.017

DRB1*1302 32660042 0.0445 0.71 0.03 0.42 3.91 × 10−4 0.68 0.031 0.73 0.34

DRB1*15 32660042 0.145 1.47 8.75 × 10−7 1.49 1.17 × 10−4 1.5 1.07 × 10−5 1.68 0.0013

DRB1*1501 32660042 0.1371 1.50 2.95 × 10−7 1.46 3.23 × 10−4 1.49 1.55 × 10−5 1.65 0.0025

DQA1*0102 32716284 0.1968 1.29 5.37 × 10−4 1.09 0.36 1.23 0.016 1.44 0.016

DQA1*0103 32716284 0.0649 0.70 0.007 0.76 0.12 0.74 0.056 0.5 0.041

DQA1*05 32716284 0.2247 0.92 0.27 0.84 0.076 0.7 8.72 × 10−5 0.92 0.58

DQA1*0501 32716284 0.2247 0.92 0.27 0.84 0.076 0.7 8.72 × 10−5 0.92 0.58

DQB1*0602 32739039 0.1326 1.52 1.58 × 10−7 1.48 2.60 × 10−4 1.5 1.93 × 10−5 1.65 0.003

DQB1*0603 32739039 0.0613 0.69 0.008 0.66 0.032 0.68 0.025 0.42 0.021

DPB1*0401 33157346 0.4268 1.15 0.03 1.29 0.0019 1.1 0.17 1.26 0.079

BP, base-pairs from the chromosome 6 p-terminus; FRQ, allele frequency in control; OR, odds ratio. The number of squamous cell cancer cases is 871,

adenocarcinomas 546, HPV16-associated cancers 668 and HPV18-associated cancers 166.

https://doi.org/10.1371/journal.pgen.1006866.t005
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Adenocarcinoma. As with squamous cell carcinoma, risk associations were seen between

adenocarcinoma and HLA Class I (HLA-B�0702 (OR = 1.48, P = 2.65 × 10−5)) and Class II

(HLA-DRB1�15 (OR = 1.49, P = 0.00012; HLA-DQB1�0602 (OR = 1.48, P = 0.00026) alleles.

Controlling for the association at any one of these alleles, no residual association was seen at

the remaining risk alleles (P> 0.01).

A strongly reduced risk of adenocarcinoma was seen with HLA-DRB1�13 (OR = 0.54, P =
1.83 × 10−5). Reduced risk was also seen in association with HLA-DQB1�0603 (OR 0.66, P =
0.032), HLA-B�15 (OR = 0.73, P = 0.039) and HLA-C�3 (OR = 0.81, P = 0.050). Conditional

analysis again indicated that the HLA Class I and II associations were separate, as was the case

with overall HPV cervical neoplasia and squamous cell carcinoma risk. Thus, controlling for

the amino acid positions 13 and 71 in HLA-DRB1, and position 156 in HLA-B, no residual

HLA allele or amino acid associations are observed with adenocarcinoma (P> 0.001).

HPV genotypes. HLA alleles were associated with disease when assessed via the HPV

genotype detected in the cervix, without regard to the histologic classification of the tumor.

Comparing HPV16 cervical cancer cases (n = 652) with healthy controls (n = 6419), similar

risk associations were seen as with cervical neoplasia overall. The HLA Class I risk was most

strongly associated with HLA-B�0702 (OR = 1.44, P = 1.10 × 10−5), and HLA Class II was asso-

ciated with HLA-DRB1�15 (OR = 1.50, P = 1.07 × 10−5); likewise, reduced risk was seen most

strongly with HLA-B�15 (OR = 0.47, P = 4.24 × 10−6).

Strong associations between HPV16 cervical cancer cases and amino acid positions 13 and

71 were found in HLA-DRB1 (P = 2.69 × 10−13 and 6.22 × 10−7 respectively), and position 156

in HLA-B (P = 4.93 × 10−8). Controlling for amino acids 13 and 71 in HLA-DRB1 left no resid-

ual HLA Class II allele or amino acid associations with HPV16-associated cervical cancer (P>
0.001). Conditioning on these amino acids and position 156 in HLA-B, some residual HLA

Class I association was seen with amino acid position 67, although this was much less signifi-

cant that in the unconditioned analysis (unconditioned P = 4.41 × 10−8; conditioned P =
2.89 × 10−4).

Considering HPV18-associated cervical cancer (n = 166 cases), association with increased

risk was strongest with HLA-DRB1�15 (OR = 1.68, P = 0.0013) and HLA-DQB1�0602 (OR =

1.65, P = 0.0030), with only nominal HLA Class I risk associations seen with HLA-B�0702 and

HLA-C�0702.

In contrast to the strong reduction in risk of HPV16-associated cervical cancer seen in

HLA-B�15 carriers, no association was seen with this allele and HPV18-associated cervical can-

cer (OR = 1.00, P = 0.99; comparing HLA-B�15 counts in HPV16 and HPV18-associated can-

cers OR = 0.53, P = 0.013). Reduced risk of HPV18-associated cervical cancer was seen with

HLA Class II alleles (HLA-DRB1�13 (OR = 0.51, P = 0.0058), HLA-DQB1�0603 (OR = 0.42, P =
0.021) and HLA-DQA1�0103 (OR = 0.50, P = 0.041)).

Considering amino acid associations of HPV18-associated cervical cancer, association was

again seen with amino acid position 13 in HLA-DRB1 (P = 7.99 × 10−5), but only modest asso-

ciation with amino acid position 71 in HLA-DRB1 (P = 0.0019). Controlling for the associa-

tion of these two amino-acids, association is observed with HLA-DPB1�0701 (P = 1.78 × 10−5),

but no other residual HLA Class II allele or amino acid associations seen (P> 0.005). HLA-

DPB1�0701 shows no association in any other analysis in this study, and may represent an

artefact of the small sample size available for HPV18 analyses (n = 166). Consistent with the

weak HLA-B�15 association with HPV18-associated cervical cancer, only marginal association

was seen in this group with position 156 in HLA-B (P = 0.014).

Replication and non-MHC findings. Of the two loci previously reported to be associated

with cervical cancer in Chinese (EXOC1 and GSDMB), no association was seen in the current

study (S3 Table, S2 Fig and S3 Fig). Considering other SNPs previously reported to be
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associated with cervical cancer, only at the MHC TNF locus was association observed in the

current study (S3 Table, S4 Fig); as stated above this association is not observed having condi-

tioned on the major HLA protective and risk alleles or amino-acids. Association was seen with

the lowest P-value SNPs at the loci OAS3, EVER1/2, and IL12RB1 (5 × 10−5 < P<0.05), where

the current study did not have findings either for the previously reported SNP or a close proxy

(r2>0.9; S3 Table). Suggestive association was observed with SNPs at 9 non-MHC loci (see S4

Table and S5–S13 Figs). No association was seen with non-MHC SNPs associated with oral

and pharyngeal cancer [28].

Heritability and genetic risk prediction. Common-variant heritability for cervical neo-

plasia was assessed by both the observed scale and the liability threshold method. The observed

scale estimate was 0.56 (SE = 0.037). This method makes the assumption of multivariate nor-

mality, and thus can be biased by the presence of a large major gene effect. The liability thresh-

old method requires the population prevalence of the disease or trait being studied to be

known. The population prevalence of persistent HPV infection is not well defined but thought

to be about 1% [2], giving an estimated common variant heritability of 0.36 (SE = 0.024). Con-

trolling for the most strongly associated MHC SNP, rs9271858, did not change these estimates,

and calculating the heritability using all chromosomes except chromosome 6 gave similar

results (heritability of 0.33). Removing CIN2 cases did not affect this estimate.

Considering genetic risk prediction, using loci with P> 10-4, the discriminatory capacity

of genetic risk score was moderate (maximum area under the curve (AUC) = 0.68)). Assuming

a 1% risk of developing cervical neoplasia amongst the population screened (i.e. amongst

HPV-infected women), the negative predictive value for women in the lower lower 50% of

genetic risk is 99.40% (SD = 0.03%; i.e.<0.6% chance of developing cervical neoplasia). Those

in the top 10% of genetic risk had an estimated genetic risk of developing cervical neoplasia of

7.1% (SD = 0.009%), and those in the top 5% had a risk of developing cervical neoplasia of

22% (SD = 5%). Positive and negative predictive values are given for different centiles in Fig 4.

Fig 4. Positive and negative predictive values for cervical neoplasia for centiles of genetic risk

scores. Error Bars denote 2 standard deviations based on 10-fold cross validation.

https://doi.org/10.1371/journal.pgen.1006866.g004
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Discussion

This study demonstrates that host genetic variants are major determinants of HPV-associated

cervical neoplasia. It confirms the strong association of the MHC with cervical neoplasia, and

specifically identifies the amino acid positions within both HLA Class I and Class II alleles.

These findings are consistent with roles for both CD4 and CD8 T-lymphocytes in disease path-

ogenesis, given the known role of these genes in presentation of antigen to these cell types.

Both risk and protective associations were seen, providing evidence that some alleles have

greater roles in relation to particular HPV genotypes and histological subtypes. Furthermore,

these findings at least partially explain the differential association of HPV16 and HPV18 with

cervical squamous cell carcinoma compared with adenocarcinoma.

Overall, three haplotypes, HLA-DRB1�15/HLA-DQB1�0602/HLA-DQA1�0102,HLA-
B�0702/HLA-C�0702, and HLA-DRB1�0401/HLA-DQA1�0301, were associated with increased

risk of both HPV16 and HPV18-associated cervical cancer, and for the development of both

squamous cell carcinoma and adenocarcinoma. Conditional analysis indicated that risk was

primarily driven by the HLA Class II alleles HLA-DRB1�1501/HLA-DQB1�0602/HLA-DQA1�

0102, with the HLA Class I associations with HLA-B�0702/HLA-C�0702 being due to linkage

disequilibrium. The haplotype HLA-DQA1�0301/HLA-DRB1�0401was independently associated

with increased disease risk though with a smaller effect size compared with the HLA-DRB1�1501/
HLA-DQB1�0602/HLA-DQA1�0102 haplotype. Perhaps because of lower power due to its smaller

effect size, no association was observed between the HLA-DQA1�0301 or HLA-DRB1�0401 and

specific cervical cancer histologic types or HPV DNA types.

An independent HLA Class I haplotype tagged primarily by HLA-B�15 was strongly associ-

ated with reduced risk of squamous cell carcinoma and HPV16-associated cervical cancer but

had only marginal association with adenocarcinoma (P = 0.039) and no association with

HPV18-associated cervical cancer (P = 0.95). HPV18 is more prevalent in adenocarcinoma

than in squamous cell cancers, and this result whilst limited in power raises the possibility that

the difference in HPV type distribution between histologic types is partly due to host genetic

factors rather than purely arising from differences in tissue tropism and pathogenicity of

HPV16 and HPV18. Recent cervical cancer sequencing studies have demonstrated a high car-

riage rate of deletions involving HLA-B providing further evidence that HLA-B is directly

involved in cervical cancer risk or pathogenesis [29]. Once mutational profiles of sufficient

tumours of different histological type are reported, it will be interesting to use this data to test

the hypothesis that HLA-B mutations differentially predispose to different histological types of

cervical cancer.

In addition to the strong reduced risk of cervical neoplasia associated with HLA-B�15, the

haplotype HLA-DRB1�1301/HLA-DQB1�0603 (and in some analyses HLA-DQA1�0103) was

associated with reduced risk of squamous cell cancer, adenocarcinoma, and HPV16- and

HPV18-related cervical neoplasia. The HLA-DRB1�1301/HLA-DQA1�0103/HLA-DQB1�0603
haplotype has previously been associated with protection from oral and oropharyngeal cancer,

particularly in HPV-positive cases (OR = 0.23, P = 1.6 × 10−6) [28]. This is of particularly inter-

est given that HPV16 is the most common HPV genotype associated with oropharyngeal

cancer.

To further assess the signals from the HLA region, we examined risk of cervical neoplasia at

the amino acid level. We observed that the HLA Class II haplotype associations are driven by

carriage of particular amino acids at HLA-DRB1 positions 13 and 71. The main risk haplotype,

HLA-DRB1�1501/HLA-DQB1�0602/HLA-DQA1�0102, carries the risk amino-acid alanine on

HLA-DRB1�1501 at HLA-DRB1 position 71 and the risk amino acid arginine at position 13.

The secondary risk haplotype HLA-DRB1�0401/HLA-DQA1�0301 carries the risk amino-acid
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histidine on HLA-DRB1�0401 at HLA-DRB1 position 13, but at position 71 carries the amino

acid lysine which is of neutral effect (see S1 and S2 Figs).

In contrast, the main protective haplotype HLA-DRB1�1301/HLA-DQB1�0603/HLA-DQA1�

0103 carries the protective amino-acid glutamic acid on HLA-DRB1�1301 at position 71, and at

amino acid position 13 also carries a protective serine. These amino-acids belong to different

classes and have varying charges and hydrophobicity. These charge differences at these keys

position within pocket 4 of the HLA-DRB1 the peptide binding groove may interact with puta-

tive HPV peptides that are permissive for or protect against development of infections that lead

to cervical cancer.

The HLA Class I associations observed are driven by the identity of the amino acid at posi-

tion 156 in HLA-B. At this position the protective HLA-B�15 allele has tryptophan while other

HLA-B alleles have either arginine, leucine or aspartic acid. The amino acid at position 156 in

HLA-B is not in the peptide-binding grove, but this particular amino acid position has previ-

ously been shown to be associated with persistent viral infection [30]. The classical allele

HLA-B�35 has two subtypes HLA-B�3501 and HLA-B�3508 that differ only at amino acid

position 156 (HLA-B�3501 leucine, HLA-B�3508 arginine), yet these HLA-B�3501 subtypes

have strikingly different peptide affinities to antigens produced by the cytomegalovirus, indi-

cating that amino-acid sequence variation outside of the peptide binding pockets can have sig-

nificant effects on antiviral immunity [30]. Further studies will be required to determine the

relationship between these amino-acid associations and the ability of HLA-DRB1 and HLA-B

to present HPV epitopes. Nonetheless, these findings are likely to be of use in design of peptide

vaccines for HPV-associated neoplasia.

Previous reports have suggested that the primary MHC associations with cervical neoplasia

are with the MICA5.1 allele and an eQTL SNP for HLA-DRB1 (rs927214), and that the associa-

tions of HLA-B�0702 and the HLA-DRB1�1501/HLA-DQB1�0602/HLA-DQA1�0102 haplotype

are secondary to the MICA5.1 allele and rs927214 [11]. This study finds no evidence to support

these suggestions, with no association observed at either MICA5.1 or rs927214, having con-

trolled for the association of the classical HLA loci. In analyses conditioning on either or both

of MICA5.1 and rs927214, residual association was still seen with classical HLA loci, including

the HLA-B�0702 and HLA-DRB1�1501/HLA-DQB1�0602/HLA-DQA1�0102 haplotypes. This

indicates that the MICA5.1 allele and rs927214 are not primarily associated with cervical neo-

plasia. It is not clear why the findings from this study are different from those previously

reported, and further evaluation in a pooled analysis or in other ethnic groups is warranted.

Our analysis indicates that common variant non-MHC loci contribute 36% of the liability of

the disease. Cervical cancer has previously been shown to have significant familiality, indicating

that either shared genetic or environmental factors are involved in disease predisposition [3,

31–33]. Twin and family studies have indicated that the heritability of cervical cancer is 22–64%

[3, 31, 34, 35]. According to a structural equation modelling study, the heritability of invasive

cervical cancer (22%) was higher than that of in situ cancer (13%), while childhood shared envi-

ronment contributed more to the in situ type (13% vs 3%) [36]. In the current study, removing

CIN2 cases did not affect the common genetic variant contribution to disease risk. Unlike these

studies, our study design is not subject to shared socio-behavioural or environmental effects

within families, which are known to be significant in cervical cancer [3, 35] and may influence

heritability estimates. The GCTA method, however, only measures the component of genetic

variation related to liability that is captured by the genotypes studied. As this study does not

have power to address low frequency or rare genetic variants, the contribution of such variants

to cervical cancer liability is not included in our analysis. We demonstrate here that there is sub-

stantial but as yet unidentified non-MHC contribution to cervical cancer, suggesting that larger,

more powerful, studies are likely to identify further genetic susceptibility factors for this disease.
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Consistent with the high heritability of the disease, our analysis shows that genetic risk scor-

ing studies have potential value in identifying women at high risk of the disease. The positive

predictive value of the cases with a genetic risk score in the top 10% was 7.1% (SD = 0.93%),

and in the top 5% was 21.6% (SD = 4.8%), compared with the risk of cervical neoplasia in HPV

carriers of 1%. This suggests that genetic risk screening could be of value in identifying some

women with very high risk of developing cervical neoplasia. Women in the lower 50% of

genetic risk scores have�0.6% (SD = 0.027%) chance of developing cervical cancer, assuming

a prevalence of cervical neoplasia of 1% among HPV exposed women. The informativity of

low genetic risk scores did not significantly increase in those with more extreme low risk

scores, with women in the lower 10% of the genetic risk score distribution having 0.54%

(SD = 0.043%) chance of developing cervical cancer. These values may vary depending on the

proportion of women who have been HPV infected who progress to cervical neoplasia, which

is not well defined in different populations. This suggests that genetic risk scores may have

clinical value in determining women at high risk of cervical neoplasia, but not in identifying

women at sufficiently low risk to be of clinical value.

In conclusion, this study has demonstrated strong association of MHC haplotypes with

increased and reduced risk of HPV-associated cervical cancers, with findings implicating both

HLA Class I and Class II loci. These associations are driven by the identity of amino-acids at

positions 13 and 71 in HLA-DRB1 and 156 in HLA-B. No non-MHC associations were identi-

fied, but strong common variant heritability was demonstrated, indicating that host genetic

variation is a major determinant of the likelihood of cervical neoplasia in HPV affected

women. Further research is indicated in the potential for genetic risk score analysis in combi-

nation with other measures to identify a subset of women at particularly high risk of cervical

neoplasia.

Methods

Study population

Case and control sets are described in Table 1. Phenotypic information was collected for

grade, histology, and HPV genotype where available from the contributing studies. Cancers

were histologically classified as either adenocarcinoma, squamous cell carcinoma or other

(Table 1). HPV DNA typing performed as part of the original studies was summarized into

four groups, those with HPV16 (but not HPV18), those with HPV18 (but not HPV16), those

with neither HPV16 nor HPV18, or those carrying both HPV16 and HPV18 (S3 Table). All

studies were conducted among majority European descent populations.

Genotyping

All case samples were genotyped at the University of Queensland Diamantina Institute using

Illumina Human660-Quad BeadChips. Controls were either genotyped by the Wellcome Trust

Sanger Centre (WTCCC2 cohort) [27], or Erasmus University, Rotterdam (Umea cohort),

using Illumina Human610-Quad BeadChips. Bead intensity data were processed and normal-

ized for each sample and genotypes called within participating studies using BeadStudio.

Statistical methods

Genotype results derived from the two different genotyping chips were combined and the

GWAS QC was performed using PLINK [37]. Standard quality control measures were applied

including identification and exclusion of cryptic related samples (112 Umea controls, 97

cases), exclusion of samples with an outlying heterozygosity rate (>0.37 or < 0.32) or excess
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missingness (>5%; 67 Umea controls, 104 cases). SNPs with Hardy-Weinberg equilibrium P-
values<10−7, or minor allele frequencies<5% were excluded. Population stratification was

accessed using Shellfish (http://www.stats.ox.ac.uk/~davison/software/shellfish/shellfish.php);

after the removal of regions of long range LD the sample set was first spiked with HAPMAP

samples to remove ethnic outliers (18 Umea controls, 44 cases), and then the principal compo-

nents were recalculated using the remaining samples. Four principal components were used as

covariates to control for population stratification.

Considering previously associated SNPs from candidate gene or GWAS studies, where the

exact SNP was neither genotyped nor imputed in the current study, a proxy SNP with high LD

(r2>0.9) with the original report was sought. Where no such proxy SNP was available, the SNP

with the most significant association at the locus/candidate gene was reported.

The genotype data for SNPs that were common between the datasets were imputed using

Impute2 using 1000 Genomes Phase 3 reference data, and association testing performed using

SNPTEST [38]. Imputed loci with quality score <0.6 were excluded from the association test-

ing. Detailed investigation of the MHC region and HLA loci was performed using SNP2HLA,

an analysis package that performs HLA allele and amino acid imputation from SNP data, and

association analysis [39]. HLA amino acid imputation was performed using a reference panel

from the Type 1 Diabetes Genetics Consortium (n = 5,225). Loci imputed by SNP2HLA with

r2<0.5 were excluded and samples where the allele dosage at any HLA type exceeded 2.5 were

removed (an additional 25 cases and 67 controls). To assess the accuracy of HLA-allele im-

putation, previously reported findings from 501 cases that had had HLA-B, -C, -DRB1 and

-DQB1DNA-based direct genotyping performed to four digit resolution in one of the studies

included in the GWAS were compared with imputed data [7]. Association and conditional

logistic regression analysis of the MHC region was performed using the SNP2HLA dosage

files using PLINK and custom R scripts. Study power was calculated using Genetic Power Cal-

culator [40]. The reference sequence for HLA-DRB1 used was GenBank Access number

AB829523.1, and for HLA-B was GenBank Accession number AB826450.

Assuming a population prevalence of cervical neoplasia among HPV-infected women of

approximately 1% [2] and that the controls were not screened for HPV infection (as was the

case in this study), the study has>95% power to detect loci with minor allele frequency = 0.1,

D’ = 0.9, with an additive odds ratio of 1.4 or more, at a genome-wide significance threshold of

P<5 × 10−8, or an odds ratio of 1.3 or more at a suggestive significance threshold of P<5 × 10−5.

The proportion of variance in risk of developing cervical pre-cancer or cancer captured by

the SNPs genotyped and imputed in this study was determined using the Genome-wide Com-

plex Trait Analysis (GCTA) method. This uses the available SNP data to assess the degree of

relatedness of cases compared with healthy controls to assess heritability in non-familial data-

sets [41].

Genetic risk scores were calculated for each individual using the adaptive MultiBLUP algo-

rithm [42] using only genotyped SNPs in common between all SNP arrays where the missing

rate was less than 5%, the frequency was greater than 2% and the Hardy Weinberg P-value for

the unaffected individuals was> 1e-7 (n = 277,670 SNPs). A conservative approach was

adopted whereby the cohort was divided into independent training and test sets (rather than

using a cross-validation approach) so that a training (1341 cases, 3217 controls) and test (3218

controls, 1342 cases) sets was used.The training set was then used to calculate the scoring

matrix, which included control of cryptic relatedness using the kinship matrix (near identical

results were obtained by using the 4 principal components to control for population stratifica-

tion in the training and test data). This MultiBLUP algorithm first selects regions based on a P-
values threshold (option—sig1) obtained using the training cohort. Within these regions all

SNPs with a significances threshold greater than a second P-value threshold (option—sig2) are
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considered by the algorithm which then controls for the LD structure. The P-value thresholds

were optimized by choosing a range of values between 10−7 and 5 × 10−3 for sig1 and 0.001

and 0.05 for–sig2; the resulting weighted predictors were applied to the test cohort to obtain

per sample scores from which the AUC was obtained. Thresholds within these ranges provided

AUC ranging from 0.66 to 0.68, with the peak AUC at sig1 = = 5e10−4 and sig2 = 0.02 of

AUC = 0.68, that included 35 regions and 692 predictors (SNPs), 234 of these within the MHC

regions. An example Manhattan plot of the LRT P-values for this training set are provided in

supplementary figures. Using these final sig1 and sig2 parameters we repeated the training

and scoring procedure 10 times using random permutations of samples in the training and

test sets to obtain standard deviations (SD) in the predictions. The average AUC was 0.678

(SD = 0.008) with an average of 32 regions (SD = 4) identified in the training examples. Posi-

tive and negative predictive values were then calculated using standard methods [43] for all 10

iterations and the mean predictive values and their standard deviat but at position 71 carries

the amino acid lysine ion calculated.
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