70 research outputs found

    Sex difference in pathology of the ageing gut mediates the greater response of female lifespan to dietary restriction

    Get PDF
    Women live on average longer than men, but have greater levels of late-life morbidity. We have uncovered a substantial sex difference in the pathology of the ageing gut in Drosophila. The intestinal epithelium of the ageing female undergoes major deterioration, driven by intestinal stem cell (ISC) division, while lower ISC activity in males associates with delay or absence of pathology, and better barrier function, even at old ages. Males succumb to intestinal challenges to which females are resistant, associated with fewer proliferating ISCs, suggesting a trade-off between highly active repair mechanisms and late-life pathology in females. Dietary restriction reduces gut pathology in ageing females, and extends female lifespan more than male. By genetic sex reversal of a specific gut region, we induced female-like ageing pathologies in males, associated with decreased lifespan, but also with a greater increase in longevity in response to dietary restriction

    Caspase involvement in autophagy

    Get PDF
    Caspases are a family of cysteine proteases widely known as the principal mediators of the apoptotic cell death response, but considerably less so as the contributors to the regulation of pathways outside cellular demise. In regards to autophagy, the modulatory roles of caspases have only recently begun to be adequately described. In contrast to apoptosis, autophagy promotes cell survival by providing energy and nutrients through the lysosomal degradation of cytoplasmic constituents. Under basal conditions autophagy and apoptosis cross-regulate each other through an elaborate network of interconnections which also includes the interplay between autophagyrelated proteins (ATGs) and caspases. In this review we focus on the effects of this crosstalk at the cellular level, as we aim to concentrate the main observations from research conducted so far on the fine-tuning of autophagy by caspases. Several members of this protease-family have been found to directly interact with key ATGs involved in different tiers across the autophagic cascade. Therefore, we firstly outline the core mechanism of macroautophagy in brief. In an effort to emphasize the importance of the intricate cross-regulation of ATGs and caspases, we also present examples drawn from Drosophila and plant models regarding the contribution of autophagy to apoptotic cell death during normal development

    Neurodegenerative Diseases and Autophagy

    Get PDF
    Most neurodegenerative diseases are characterized by the accumulation of aggregated proteins within neurons. These aggregate-prone proteins cause toxicity, a phenomenon that is further exacerbated when there is defective protein clearance. Autophagy is an intracellular clearance pathway that can clear these protein aggregates and has been shown to be beneficial in the treatment of neurodegenerative diseases in a variety of model systems. Here, we introduce the key components of the autophagy machinery and signaling pathways that control this process and discuss the evidence that autophagic flux may be impaired and therefore a contributing factor in neurodegenerative disease pathogenesis. Finally, we review the use of autophagy upregulation as a therapeutic strategy to treat neurodegenerative disorders

    Mitophagy plays a central role in mitochondrial ageing

    Get PDF

    AMPK Functions to Modulate Tissue and Organismal Aging in a Cell Non-Autonomous Manner

    No full text
    Understanding the biological mechanisms of aging represents an urgent biomedical challenge. AMP-activated protein kinase (AMPK) exhibits pro-longevity effects in diverse species. However, the tissue-specific mechanisms involved in AMPK regulation of aging are poorly understood. Here, we show that activation of AMPK in the adult Drosophila nervous system induces autophagy both in the brain and the intestinal epithelium. These cell autonomous and non-autonomous functions of AMPK are linked to improved intestinal homeostasis, muscle proteostasis and extended lifespan. Neuronal upregulation of the autophagy-specific protein kinase Atg1 is both necessary and sufficient to induce these inter-tissue effects during aging, resulting in prolonged lifespan. Furthermore, transgenic AMPK overexpression in neurons is sufficient to increase endogenous AMPK gene activity in distal tissues of the organism, including the intestine. In a complementary approach, transgenic upregulation of AMPK specifically in the adult intestine induces autophagy both cell autonomously and non-autonomously in the brain, exhibiting slowed systemic aging and prolonged lifespan. Additionally, we show that the organism-wide response to tissue-specific AMPK/Atg1 activation is linked to suppressed Drosophila insulin-like peptide (DILP) signaling. Together, these results reveal that localized transgenic activation of AMPK can function to relay pro-longevity signals to distal tissues. AMPK may now represent part of a novel brain-to-gut and gut-to-brain signaling axis in Drosophila

    Réactions d'hypersensibilité et intolérances au blé et à ses dérivés

    No full text
    MONTPELLIER-BU Pharmacie (341722105) / SudocSudocFranceF

    AMPK Modulates Tissue and Organismal Aging in a Non-Cell-Autonomous Manner

    Get PDF
    AMPK exerts prolongevity effects in diverse species; however, the tissue-specific mechanisms involved are poorly understood. Here, we show that upregulation of AMPK in the adult Drosophila nervous system induces autophagy both in the brain and also in the intestinal epithelium. Induction of autophagy is linked to improved intestinal homeostasis during aging and extended lifespan. Neuronal upregulation of the autophagy-specific protein kinase Atg1 is both necessary and sufficient to induce these intertissue effects during aging and to prolong the lifespan. Furthermore, upregulation of AMPK in the adult intestine induces autophagy both cell autonomously and non-cell-autonomously in the brain, slows systemic aging, and prolongs the lifespan. We show that the organism-wide response to tissue-specific AMPK/Atg1 activation is linked to reduced insulin-like peptide levels in the brain and a systemic increase in 4E-BP expression. Together, these results reveal that localized activation of AMPK and/or Atg1 in key tissues can slow aging in a non-cell-autonomous manner
    • …
    corecore