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Abstract The mechanisms underlying ageing have been

discussed for decades, and advances in molecular and cell

biology of the last three decades have accelerated research

in this area. Over this period, it has become clear that

mitochondrial function, which plays a major role in many

cellular pathways from ATP production to nuclear gene

expression and epigenetics alterations, declines with age.

The emerging concepts suggest novel mechanisms,

involving mtDNA quality, mitochondrial dynamics or

mitochondrial quality control. In this review, we discuss

the impact of mitochondria in the ageing process, the role

of mitochondria in reactive oxygen species production, in

nuclear gene expression, the accumulation of mtDNA

damage and the importance of mitochondrial dynamics and

recycling. Declining mitophagy (mitochondrial quality

control) may be an important component of human ageing.

Introduction

Ageing of multi-cellular organisms is a highly complex

biological process associated with a progressive decline in

the performance of most organs, culminating in the

inability to meet environmental demands for survival

(Linnane et al. 1989). At a cellular level, it is the process

during which cells accumulate damage and changes that

affect their function. These include changes in: oxidative

stress, epigenetic status, energy availability, telomeres, loss

of stemness, mitochondrial damage and impaired cell cycle

(Wei et al. 1998; Lardenoije et al. 2015; Fyhrquist et al.

2013; Goodell and Rando 2015). These insults amount to

cellular senescence, which halts the proliferation of dam-

aged or dysfunctional cells and constrains the malignant

progression of tumour cells (Takeuchi et al. 2010).

Lopez-Otin used three simple criteria to define hall-

marks of ageing: (1) manifestation during normal ageing;

(2) experimental aggravation accelerating ageing; and (3)

experimental amelioration slowing down ageing. Accord-

ing to this study, the nine hallmarks of ageing fulfilling

these criteria are genomic instability, telomere attrition,

loss of proteostasis, deregulated nutrient sensing, altered

intercellular communication, cellular senescence, stem cell

exhaustion, epigenetic alterations and mitochondrial dys-

function (Lopez-Otin et al. 2013).

In tissue culture, senescent cells become larger follow-

ing a permanent arrest in cell cycle, due to p53 and pRB

pathways after an attempt to repair cell damage (Campisi

2005). If such non-dividing cells accumulate in vivo, they

will presumably impair the renewal and repair capacity of

the tissue. Moreover, senescence upregulates the secretion

of factors such as Interleukins (IL-6, IL-7), chemokins (IL-

8), growth factors (VEGF, HGF, SCF), receptors and

ligands (ICAM-1 and 3, EGF-R, Fas) that may vary

between tissues but affect their structure and function

(Takeuchi et al. 2010; Coppe et al. 2010). This causes

deterioration in the physiological functions of the organ-

ism, a decline in physical performance due to the decrease

in aerobic capacity and in the strength of skeletal muscles,

(Hebert et al. 2015) and eventually death. It is associated

with frailty, cardiovascular, neurodegenerative and other

age-related disease. The rising number of senescent cells is

accompanied by an increased sensitivity to apoptosis

(Tower 2015) which may explain the development of these
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degenerative disorders. Targeting cells expressing the

senescence biomarker p16Ink4a, which activates pRB to

stop cell growth, limits the accumulation of senescent cells,

hence delaying the appearance of age-related pathologies

and improving exercise tolerance (Baker et al. 2011). The

increased sensitivity of senescent cardiomyocytes to

apoptosis leads to cardiac pathologies such as hypertrophy,

fibrosis, and diminished contractility. Age-related neu-

rodegenerative disease such as Alzheimer, Parkinson and

amyotrophic lateral sclerosis are all associated with accu-

mulating aggregates of misfolded protein (reviewed in

Skovronsky et al. 2006). These can not only activate the

unfolded protein response (UPR) but also lead to calcium

dysregulation and to less energy availability due to mito-

chondria dysfunction. They may increase apoptosis, cause

neuronal loss and damage synapses.

Mitochondrial function plays a major role in many

cellular pathways such as ATP production, calcium regu-

lation, apoptosis and nucleotide synthesis. Recently,

mitochondria have been implicated in nuclear gene

expression and epigenetic alterations (Guantes et al. 2015;

Muir et al. 2016). They are thus even more likely to play a

central role in ageing than was previously believed. For

instance, work in S. cerevisiae links optimal mitochondrial

quality with longer lifespan (Higuchi et al. 2013). Mito-

chondria have been shown to be involved in telomere

length, maintenance of pluripotency, genomic instability,

cellular senescence and epigenetic alterations (Ahlqvist

et al. 2015; Correia-Melo and Passos 2015; Minocherhomji

et al. 2012; Monickaraj et al. 2012; Tyrka et al. 2015).

Mitochondrial DNA (mtDNA) damage has been widely

discussed in this context (Linnane et al. 1989). Recent

advances in understanding of mitochondrial quality control

add an important dimension to the study of ageing. Mito-

phagy is one of several processes that maintain mito-

chondrial quality, but is the only one known to turn over

whole mitochondrial genomes. While relatively unimpor-

tant in bulk turnover of all mitochondrial compo-

nents (Kim et al. 2012), it may play a critical role in the

accumulation of mtDNA damage and potentially ageing

(Payne et al. 2013; Twig et al. 2008). Furthermore,

autophagy may be an important determinant of stem cell

pluripotency (Phadwal et al. 2012) and be attenuated in

several neurodegenerative diseases (Nixon 2013).

Because of its importance, this review will therefore

focus on the mitochondrial aspects of ageing. We will

touch on a range of organisms but focus on mammalian

systems and human ageing in particular. We will discuss

how mitochondria can have such an impact, focussing on

the metabolic side, the role of mitochondria in reactive

oxygen species (ROS) production, in nuclear gene

expression and heteroplasmic mtDNA damage (where

damaged and intact mtDNA co-exist), and finally how

mitochondrial dynamics and recycling can affect the age-

ing process.

MtDNA heteroplasmy and ageing: the vicious
circle hypothesis

The causes of ageing have been discussed for decades, and

the advances in molecular and cell biology have provided

important insights into this area. It has become clear that

mitochondrial function declines with age, and the emerging

concepts suggested novel mechanisms. MtDNA was iden-

tified, characterised and shown to play a role in human

disease. Thousands of copies of mtDNA are present in

most types of cells. In normal individuals, these are iden-

tical, but in heteroplasmic mtDNA disease, normal and

mutant mtDNA co-exist in the same cells. In these dis-

eases, the dose of mutant mtDNA may increase with time,

causing progressively worsening symptoms. Low levels of

heteroplasmic mtDNA mutants may be present in symp-

tom-free maternal relatives. These findings soon suggested

an mtDNA-based theory of ageing in which an increase in

mitochondrial heteroplasmy may underlie the decline in

energy in ageing individuals. Furthermore, the uniparental

inheritance of mtDNA results in a selection asymmetry that

may explain the shorter lifespan of males than females:

mtDNA mutations that affect only males will not respond

to natural selection, imposing a male-specific disadvantage

that results from mitochondrial mutation load (Wolff and

Gemmell 2013).

However, because there is no clear maternally inherited

determinant of life-expectancy, somatic accumulation of

mtDNA damage in males could contribute to their early

death (Linnane et al. 1989). For instance, mitochondria in

human fibroblasts harbour mtDNA mutations at levels that

increase with the age of the donor, and these confer a

respiratory chain defect (Laderman et al. 1996). Further-

more, mtDNA mutations can be found in multiple different

tissue types at levels that increase with age (Simonetti et al.

1992; Bender et al. 2006; Cortopassi and Arnheim 1990;

Melov et al. 1999; Marin-Garcia et al. 2006) and may be

associated with different types of neurodegeneration such

as Alzheimer (Coskun et al. 2004) and Parkinson’s disease

(Bender et al. 2006). MtDNA deletions that are charac-

teristic of diseases due to defects in mtDNA maintenance

and accumulate in post-mitotic tissues of ageing humans

are found at increased levels in many neurodegenerative

diseases (Krishnan et al. 2008). Furthermore, these reca-

pitulate the accumulation of mtDNA rearrangements that

appear to cause senescence in fungi (Osiewacz and Her-

manns 1992). Several studies focussing on the control

region of human mtDNA showed that mutations accumu-

late in this region in muscle from 30-year olds, but not in
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brain (Calloway et al. 2000; Murdock et al. 2000). These

are de novo mutations as they are detected in grandmothers

but not in grandchildren of the same family (do Rosario

Marinho et al. 2011). It is to be noted that having a mito-

chondrial condition does not seem to worsen this effect (da

Costa et al. 2007). An array-generated single-nucleotide

polymorphism study has shown that even if overall the

heteroplasmy increases with age, some sites lose variation

while some increase it (Sondheimer et al. 2011). In the

hypervariable segment 1, especially at nucleotides 16189,

16304, and 16311, heteroplasmy seems to increase with

age (Pliss et al. 2011). This may well reflect any effect that

these polymorphisms have on mitochondrial function:

investigation of mtDNA heteroplasmy in platelets from

137 people revealed an association between increasing low

level heteroplasmy with age for known pathogenic muta-

tions and ageing phenotypes (Tranah et al. 2015). In a

mouse model of atherosclerosis, it has been shown that

mtDNA deletions associated with low COX III protein

levels appear long before atherosclerosis plaques (Tian

et al. 2016). This study shed also some light on the reason

for a decrease in mtDNA quality since it shows that OGG1,

a mitochondrial enzyme involved in mtDNA excision,

decreases with age.

If the accumulation of mtDNA mutations led to a

compensatory increase in mtDNA copy number, the dele-

tion mutants would accumulate (Elson et al. 2001). Related

ideas have been discussed widely (Linnane et al. 1989;

Melov et al. 1999; Corral-Debrinski et al. 1992; Cortopassi

et al. 1992; Osiewacz and Hermanns Osiewacz and Her-

manns 1992; Blanchard et al. 1993; Munscher et al. 1993;

Takeda et al. 1993; Tritschler and Medori 1993; Birch-

Machin et al. 1998) and led to the well-known vicious

cycle theory of ageing. This proposes that mitochondrial

dysfunction or oxidative stress caused by accumulation of

mtDNA mutants in itself damages mitochondria further. In

its simplest form, this has little supporting data (Tengan

et al. 1997), but it gathered credibility because of the sur-

prising phenotype of a mouse which was engineered to

study the effect of rapid accumulation of mtDNA muta-

tions as a result of impaired proof reading in the mito-

chondrial gamma polymerase. This Polg ‘‘mutator’’ mouse

manifests a premature ageing phenotype (Trifunovic et al.

2004). As mentioned earlier ROS levels increase with age,

especially mitochondrial ROS, and this increase in oxida-

tive stress could be responsible for de novo mtDNA

mutations that might feed the ageing process (Mikhed et al.

2015). Thus, oxidative stress/ROS produced by the mito-

chondrial electron transport chain is held to damage the

mitochondria leading exponentially to more ROS produc-

tion and mitochondrial damage. However, the predicted

exponential increase in mutation load is not apparent

(Trifunovic and Larsson 2008). Hence, a more

sophisticated version of the vicious circle hypothesis is

needed, and one that takes spatial relationships into

account provides more answers (Kirkwood and Kowald

2012). Because mitochondrial nucleoids are in close

proximity to inner mitochondrial membrane and the res-

piratory chain, the main source of cellular ROS, they are

highly susceptible to ROS-induced damage. Hence, exter-

nal oxidative stress would likely have an insignificant

effect on mtDNA damage, even when it substantially

increases protein oxidation. This would also explain why

simply manipulating general anti-oxidant concentrations

does not robustly rescue the damage (Kirkwood and

Kowald 2012). It is further supported by a tissue culture

study showing that the age-associated decrease in cell

spreading induces an increase in ROS production and an

increase in mtDNA mutations (Quan et al. 2015). Moreover

telomere length may be linked to the mtDNA content and

quality (Monickaraj et al. 2012; Tyrka et al. 2015). How

they relate to each other remains to be determined. In one

scenario, telomerase protects mitochondria from mild

oxidative stress (Ahmed et al. 2008). Other authors suggest

that p53 repression of PGC-1 promoter due to a telomere

dysfunction could be involved or that TERT affects

mtDNA repair (Monickaraj et al. 2012; Tyrka et al. 2015).

Many studies have investigated transmission of hetero-

plasmy, distinguishing between selection in the germline

and in somatic tissues with rapid turnover, such as

intestinal crypts. Low-level heteroplasmy and non-patho-

genic mutations are readily transmitted in the germline

(Sondheimer et al. 2011; Giuliani et al. 2014; Greaves et al.

2014). Pathogenic mutations tend arise in somatic cells

rather than the germline, only becoming apparent in early

adulthood. This is entirely consistent with purifying

selection during mtDNA transmission (Greaves et al.

2014). Interestingly, next-generation sequencing showed

that the mtDNA mutation rate does not seem to increase

with age (Greaves et al. 2014). This suggests that ageing

affects other processes, such as mtDNA turnover, and that

these underline the accumulation of mutant mtDNA post-

mitotic tissues. Perhaps the best evidence to support the

mitochondrial theory of ageing is the finding that passive

transmission of mtDNA mutations, generated by Polg

mutations in preceding generations, can induce a mild

ageing phenotype in the absence of an ongoing defect in

mtDNA maintenance (Ross et al. 2013).

Our recent study shows that mitophagy in skin fibrob-

lasts declines as the age of the donor increases. Moreover,

forcing cells to rely on their mitochondria to produce

energy induces mitophagy that specifically eliminates

mutant mtDNA (Diot et al. 2015). This may contribute to

the improvement of mitochondrial function and the bene-

ficial effect of exercise (Romanello and Sandri 2015) and

caloric restriction in delaying the ageing process and
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concomitant deterioration in mitochondrial function. The

increase of sirtuin 3 localised to mitochondria and involved

in mitochondrial ROS detoxification, ATP production and

network dynamics (Jacobs et al. 2008; Ahn et al. 2008;

Samant et al. 2014; Hirschey et al. 2010; Jing et al. 2013;

Papa and Germain 2014), during exercise or the activation

of mitophagy following caloric restriction would trigger

the clearing of mutant mtDNA. This should reduce the

level of heteroplasmic mutant mtDNA and improve mito-

chondrial quality and function.

Mitochondrial function, ROS production
and ageing

Declining mitochondrial activity is a well-known feature of

ageing (Hebert et al. 2015). Recent studies have shown that

mitochondrial dysfunction has a role to play in senescence

and in the ageing phenotype of the immune system. In

dendritic cells, mitochondrial membrane potential, the ATP

turnover and mitochondrial respiratory chain (MRC) cou-

pling and OXPHOS decrease with age (Chougnet et al.

2015). These results were mimicked pharmacologically in

young dendritic cells. Other studies have shown that, with

ageing, oxygen consumption and activities of complex III

and complex IV are decreased (Das and Muniyappa 2013;

Ben-Meir et al. 2015), and that this can be rescued with

coenzyme Q supplementation (Ben-Meir et al. 2015; Var-

ela-Lopez et al. 2015). This has been observed in several

tissues in human and mice model such as granulosa cells

(Ben-Meir et al. 2015), muscle (Porter et al. 2015) and

alveolar bone (Varela-Lopez et al. 2015). Impaired mito-

chondrial function may well be important in age-related

insulin resistance (Petersen et al. 2015; Goldsworthy and

Potter 2014) and in the tendency for failing hearts to use

glycolytic rather than oxidative substrates (Evans and

Clarke 2012). Further, dysfunctional mitochondria may be

a source of oxidative stress.

The free radical theory of ageing was first established in

the 1950s by Denham Harman (Harman 1956). While

excessive ROS cause oxidative stress, lower levels are

critically important in cell signalling (Schieber and Chan-

del 2014). ROS production increases with age and has been

linked to mtDNA mutations accumulation, protein oxida-

tion, shorter telomere, and increased apoptosis (Mikhed

et al. 2015; Carney et al. 1994; Salpea et al. 2013; Wang

et al. 2013). As a proof of concept, work in yeast has shown

that feeding yeast with lithocholic acid, a compound acting

on redox processes, delays ageing. It results in an

enlargement of mitochondria and an increase in the effi-

ciency of mitochondrial respiration (Burstein and Titor-

enko 2014). Similarly, reducing ROS by targeting electron

scavengers to mitochondria improves the phenotype of

sarcopenia in rats, increasing contractility, reducing protein

oxidation and increasing activity of CI, CIII, and CIV

(Javadov et al. 2015). However, it is the level of oxidative

stress rather than of ROS production that is important.

Genetic knockdown of NRMT1, a protein involved in

protein–DNA interaction, increases ROS and thus shortens

lifespan in the mouse (Bonsignore et al. 2015). When livers

from survivors were analysed, they revealed a decreased

ROS production demonstrating that it is the decreased

capacity to deal with ROS damage that causes problems in

this mouse. Again, genetic reduction in SOD1 activity also

exacerbates ageing in mice, and these display features of

altered neurotransmitter release and decreased calcium

influx (Ivannikov and Van Remmen 2015). The Polg

mutator mouse model also displays an impaired anti-oxi-

dant defence system, with reduced ergothioneine levels or

carnitine, which could result from a depletion in mito-

chondria (Clark-Matott et al. 2015). Neurotransmission in

this mouse is also altered, indicating a potential link

between ROS and neurodegeneration. Similarly, increasing

mitochondrial oxidative stress in stem cells leads to

senescence, cell cycle arrest and loss of stemness (Velarde

et al. 2015). When these mice reach old age, this results in

a thinner epidermis and delays wound closure (Velarde

et al. 2015), characteristics of an ageing phenotype. In

humans, this oxidative mechanism could be tissue specific

as a study in related women has shown that in muscle

mitochondrial function decreases with ageing, together

with a drop in MRC complex proteins and mtDNA copy

number (Hebert et al. 2015). This age-related decline in

mitochondrial function correlates with a decreased

expression with age of Sirtuin 3 (see later section) and both

can be rescued by exercise (Lanza et al. 2008).

At the cellular level, hematopoietic stem cells from aged

mice have an increased ROS levels associated with DNA

damage, apoptosis and shorter telomeres. This results in a

decreased capacity for regeneration (Porto et al. 2015).

This increase in ROS level with age, which also has a

circadian rhythm (Gong et al. 2015), could be due to a

dysregulation of mitochondrial gene expression.

However, this ROS ageing theory has been increasingly

challenged and now requires revision.

Indeed, some studies showed that although there is a

correlation between mtROS production and lifespan, the

mtROS are not directly responsible for the ageing. They

showed, however, that the mtDNA controls longevity

(Sanz et al. 2010). Similarly a knockdown of CCO-1, the

nuclear-encoded cytochrome c oxidase-1 subunit Vb/

COX4, induced a moderate alteration in the electron

transport chain, ultimately leading to an increased long-

evity (Durieux et al. 2011; Yang and Hekimi 2010). These

experiments showed that although the generation of

superoxide is increased, the overall ROS level is not.

384 A. Diot et al.: Mitophagy plays a central role in mitochondrial ageing

123



Moreover, the increase in superoxide appeared to be nec-

essary to improve the lifespan which would tend to indicate

the ROS could be signalling molecules instead of molec-

ular actors in ageing (Yang and Hekimi 2010). Similarly,

work on Daf-2 mutants that are defective in insulin/IGF1-

signalling, lead to the hypothesis that lifespan extension

requires a transient increase in ROS. These act as sig-

nalling molecules to increase endogenous ROS defences

and increased lifespan extending stress resistance (Zarse

et al. 2012). Indeed, constitutive Daf-2 mutants have an

increased resistance to paraquat treatment, an increased

mitochondria metabolism and an increased activity of both

SOD and catalase resulting in an overall decrease in ROS

level. This signalling pathway involves the orthologues of

AMPK, p38MAPK, NRF-2, PMK-1 and SKN-1.

In Caenorhabditis.elegans mildly inhibiting the mito-

chondrial respiratory chain, either genetically (Rea et al.

2007) or biochemically (De Haes et al. 2014) increases the

lifespan of the worm, while more severe dysfunction

shortens it (Rea et al. 2007). In tissue culture, inducing

mitochondrial dysfunction may lead to cell cycle arrest and

senescence, associated with an increase in mtDNA copy

number (Wiley et al. 2016; Zelenka et al. 2015). However,

intermittent treatment with 5 mM L-lactate (leading to ROS

production, phosphorylation of AMPK and activation of

PGC1-a) seems to improve the phenotype (Zelenka et al.

2015). The mitohormesis hypothesis (Ristow and Zarse

2010; Tapia 2006) can explain these disparate observa-

tions: a dysfunction coupled with a moderate increase in

ROS activates protective quality control pathways and

result in an overall improved mitochondria quality. How-

ever, continuous or strong MRC dysfunction leads to a

substantial accumulation of ROS, which overwhelms the

protective mechanisms. Similar ideas have been linked to

the beneficial effect of mild stresses such as exercise and

fasting (Zelenka et al. 2015; Tapia 2006).

Mitochondria–nucleus relationship in ageing

Mitochondria–nucleus crosstalk

Three decades ago the first pointers towards crosstalk

between mitochondria and nucleus became evident, the

abundance of nuclear-encoded transcripts appeared to vary

with the mtDNA content (in quantity and quality) in bud-

ding yeast (Parikh et al. 1987). The concept of the retro-

grade response emerged, in which mitochondria signal

dysfunction, thus inducing expression of nuclear genes.

One such gene is CIT2 a peroxisomal isoform of citrate

synthase, another is Rtg2p that activates the transcription

factor Rtg1p–Rtg3p (Jia et al. 1997; Sekito et al. 2000).

This retrograde response is triggered by a decrease in the

mitochondrial membrane potential (Miceli et al. 2011) and

is proportional to the extent of the mitochondrial dys-

function (Jazwinski 2005). While the precise details of the

interaction between mitochondria and nucleus differ, there

is ample evidence for such crosstalk in humans. For

instance, many defects in mtDNA maintenance are caused

by mutations in nuclear genes of the replisome (Naviaux

et al. 1999; (Kaukonen et al. 2000; Spelbrink et al. 2001),

and the mitochondrial dysfunction that results from

mtDNA depletion or damage activates responses in a large

number of nuclear genes (Hansson et al. 2004). Moreover,

the interaction between mitochondria and nuclear DNA is

important for longevity and ageing in humans because a

non-random association between mtDNA and nuclear

variability has been shown in centenarians (De Benedictis

et al. 2000).

Much recent research has been carried out to investigate

the role of epigenetics, and particularly of methylation, in

the ageing process. Changes in the methylation pattern

occur over the course of lifetime (Wang et al. 2012;

Johansson et al. 2013; McClay et al. 2014). These changes

can be either towards hypermethylation or hypomethyla-

tion (Johansson et al. 2013) with the CpG-rich promoters,

preferential sites for methylation, tending to get hyperme-

thylated and regulatory regions, poor in CpG, getting

hypomethylated (Heyn et al. 2012). A study by Horvarth

et al. has proposed the existence of an epigenetic clock

formed by 343 CpG sites. Alterations at these sites are

linked to increased risk of cancer and ageing phenotypes

(Horvath 2013). The methylation status is the result of the

effect of different factors such as sex, genetics, smoking

and environmental constraints (Monick et al. 2012; Shen-

ker et al. 2013; Shah et al. 2014).

Many studies have shown the importance of mitochon-

drial–nuclear crosstalk. In cultured cells, mitochondrial

content is central to nuclear gene expression (Guantes et al.

2015; Muir et al. 2016); DNA methylation is linked not

only to mtDNA copy number (Smiraglia et al. 2008) but

also to the mtDNA haplotype (Bellizzi et al. 2012; Kelly

et al. 2013). In addition, as most mitochondrial proteins are

nuclear encoded, they can also be regulated at the epige-

netic level; PolgA, for example, a nuclear-encoded mito-

chondrial protein involved in mtDNA replication, is

dynamically regulated throughout development with its

methylation status being negatively correlated with the

mtDNA copy number (Kelly et al. 2012). It is thus likely

that DNA epigenetics and mitochondrial function are

controlling each other via a feedback loop (Koczor et al.

2013). Other DNA modifications, such as acetylation, also

seem to be regulated by mitochondria and ATP levels

(Wellen et al. 2009).
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The sirtuins play a key role in many
of the processes that underlie ageing

Sirtuins, also known as Silent information regulator two

(Sir2) proteins, regulate important biological pathways in

eukaryotic cells and hence play a key role in many of the

processes that underlie ageing. They have a histone

deacetylase and mono-ribosyltransferase activity which is

connected to the energy of the cell by sensing NAD:NADH

ratio, NAD, NADH or nicotinamide levels. They affect

modifications of histones and other proteins to regulate

multiple cellular functions. Interest in their role in the

regulation of lifespan and the ageing process began in 2001

with the finding that Sir2, encoding the sirtuin 1 protein

(SIRT1), acts as a lifespan regulator in yeast. Sir2 over-

expression increases lifespan (Tissenbaum and Guarente

2001) with mutations causing a severe reduction in lifespan

(Kaeberlein et al. 1999). This result has been reproduced in

mice and drosophila (Kanfi et al. 2012; Whitaker et al.

2013). Whether or not SIRT1 mediates the beneficial

effects of caloric restriction on lifespan is still under debate

(Kaeberlein et al. 2004; Tsuchiya et al. 2006). In humans,

SIRT1 is involved in ageing and a positive correlation

between its levels of expression and the mitotic activity has

been established (Bai et al. 2014; Sasaki et al. 2006).

Similarly its activation in mice does improve the lifespan

of the animal (Mitchell et al. 2014).

The sirtuin family is composed of seven sirtuins with

three localised to mitochondria including sirtuin 3 (SIRT3),

which is localised to the mitochondrial matrix and has been

implicated in age-related diseases (Zeng et al. 2014; Tao

et al. 2014). This protein is involved in the regulation of

mitochondrial ROS detoxification, ATP production and

network dynamics by activation of the fusion protein

OPA1, fatty acyl oxidation, metabolism and mitochondrial

UPR (Jacobs et al. 2008; Ahn et al. 2008; Samant et al.

2014; Hirschey et al. 2010; Jing et al. 2013; Papa and

Germain 2014). SIRT3 appears to be a mediator of caloric

restriction as its expression and effect on mitochondrial

protein acetylation is increased by 24 h of fasting (Jing

et al. 2013). However, the exact role of SIRT3 in the

ageing process remains unclear. Down-regulation of SIRT3

results in several age-related diseases including cancer,

diabetes, cardiac pathologies and neurodegenerative dis-

orders. In a mouse model, knocked out for SIRT3 (SIRT3

KO) an accelerated ageing phenotype is observed, mito-

chondrial integrity is lost, and MEFs are more prone to

immortalisation (Kim et al. 2010). In this mouse model, a

proportion of SIRT3 KO mice develop spontaneous cancer

at old age. In humans, SIRT3 is found downregulated in

several cancers, such as ovarian, breast, liver and gastric

cancers (Finley et al. 2011; Zhang and Zhou 2012; Yang

et al. 2014), potentially via an increased mitochondrial

oxidative stress (Schieber and Chandel 2014; Kim et al.

2010) and associated changes in cell metabolism (Haigis

et al. 2012).

As mentioned earlier, SIRT3 is also involved in meta-

bolic disease such as diabetes. SIRT3 KO mice show an

accumulation of lipids in liver and impaired fatty acid

oxidation (Hirschey et al. 2010). They also develop a

peripheral insulin resistance with a decreased PDH activity

(Jing et al. 2013). Furthermore SIRT3 is implicated in

preventing the metabolic shift away from fatty acid oxi-

dation and towards glycolysis and in limiting the ROS

production and the activity of transcription, and translation

initiation factors involved in cardiac hypertrophy in the

failing heart (Sundaresan et al. 2009).

Finally SIRT3’s role in mitochondrial function and high

expression levels in the brain (Zeng et al. 2014; Ban et al.

2013; Sidorova-Darmos et al. 2014) make it a potential

target for therapeutics aimed at preventing neurodegener-

ative disease. SIRT3 overexpression has been shown to

protect neurons from cellular stresses such as ROS (Weir

et al. 2012; Dai et al. 2014) and mitochondrial dysfunction

and apoptosis due to SOD1 mutations (Song et al. 2013).

SIRT3 reduction of ROS-associated damage is manifestly

beneficial in mice as it slows down age-related hearing loss

during caloric restriction (Someya et al. 2010).

Caloric restriction and sirtuins

One strategy to limit the ageing effect is a calorie-restricted

diet. This was first found to increase lifespan in mice

(Sohal et al. 1994). The same study showed that age-related

oxidative damage could be prevented by caloric restriction.

These results were then confirmed in muscle from mice and

heart from rats, where caloric restriction limits mitochon-

drial-associated oxidative damage (Lass et al. 1998; Gre-

dilla et al. 2001). In yeast, caloric restriction extends

lifespan by decreasing the NADH levels leading to an

activation of Sir2 and a shift of the metabolism towards

respiration (Lin et al. 2002, 2004). Overall caloric restric-

tion seems to improve mitochondrial function, by

enhancing the transcription of ROS scavengers and pro-

teins linked to energy metabolism (Sreekumar et al. 2002).

It protects mitochondria against mitochondrial DNA dele-

tions (Cassano et al. 2004), against apoptosis by inducing

SIRT1 (Cohen et al. 2004) and induces mitochondrial

biogenesis (Lopez-Lluch et al. 2006; Civitarese et al. 2007)

to improve mitochondrial function. Hypothetically since

biogenesis is increased, degradation of dysfunctional

mitochondria might also be increased; the first clue sup-

porting this was that the expected decline in autophagy

with age could be rescued by caloric restriction (Bergamini
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et al. 2003). More interestingly, a recent study has shown a

protective effect of mitophagy on oxidative damage (Cui

et al. 2013). Kidneys from rats under a calorie restriction

diet displayed an increased mitophagy and less mitochon-

drial damage together with a decrease in a marker of

senescence.

Mitochondrial dynamics, quality control
and ageing

Mitochondrial fusion and fission and determinants

of lifespan

Studies in yeast have shown that mitochondrial dynamics

are an important determinant of lifespan (Bernhardt et al.

2015). This appears to depend on mitochondrial dynamics

rather than the organisation of the mitochondrial network

in itself (Bernhardt et al. 2015; Chen et al. 2005). In yeast,

double mutants yeast for Mgm1 and Dnm1 have a mito-

chondrial network morphology similar to that of wild-type,

their mitochondrial function is affected and their replica-

tive lifespan is decreased (Bernhardt et al. 2015). Several

other studies have linked fragmentation of the mitochon-

drial network with reduced lifespan (Braun and Wester-

mann 2011; Aerts et al. 2008; Aerts et al. 2009). On the

other hand, caloric restriction has been shown to decrease

the expression of mitochondrial fission factors Drp1 and

Fis1 and to upregulate the fusion factor Mgm1, resulting in

a more filamentous network (Goldberg et al. 2009). In Rat,

caloric restriction leads to the same effect and an increase

in cristae number has been observed (Khraiwesh et al.

2014). These results are recapitulated in mammalian sys-

tems. For instance, a study of retina of young and old mice

shows a change of mitochondrial dynamics in the retina

with age: there is a decline of FIS1 and OPA1 in the

ganglional cells and the outer plexiform layers. This con-

trasts with an increase in both OPA1 and FIS1 in the inner

segment where damage is most likely to accumulate, sug-

gesting a compensatory increase in mitochondrial turnover

in this key region (Kam and Jeffery 2015). These results

were further confirmed using electron microscopy reveal-

ing fragmented mitochondria in the retina. In a seminal

study, Chen et al. showed that mitochondrial fusion is

essential to maintain mitochondrial function in tissue cul-

ture. Loss of the mitochondrial fusion proteins OPA1 or

MFN1 and 2 led to mitochondrial fragmentation, poor cell

growth and impaired mitochondrial respiration (Chen et al.

2005). Mitochondrial fragmentation that did not signifi-

cantly affect dynamics was insufficient to do this. Simi-

larly, disrupting mitochondrial fission did not affect

mitochondrial function or cell growth. However, in another

study, inhibiting fission disrupted mitochondria segregation

and was responsible for loss of properties (Katajisto et al.

2015). These investigators observed that in stem-like cells

division is asymmetric; some cells inherit mainly ‘‘old’’

mitochondria and loose their stemness properties (self-re-

newal and pluripotency), whereas others get young mito-

chondria and stay stem-like. This indicates that a

mechanism exists to sort old and young mitochondria and

highlights the importance of mitochondrial turnover and

quality in maintaining ‘‘stemness’’.

Given that the cell uses several ways to maintain

mitochondria (Rugarli and Langer 2012), what aspect of

mitochondrial dynamics determine their propensity to age?

MtDNA mutations tend to accumulate when the

fusion/fission cycles are less frequent and there is less

mtDNA mixing. Fusion appears to be important for mixing

content of different mitochondrions (Tam et al. 2013; Chan

2012) hence keeping the network relatively homogeneous.

It needs, however, to be opposed to enough counteracting

fission events as there are numerous studies reporting that a

fission arrest or a huge increase in fusion are detrimental.

These include studies that show mitochondria hyperfila-

mentation that is apparent in brain from patients or mouse

model of AD and leads to cellular senescence (Zhang et al.

2016; Park et al. 2010).

As well as affecting the fusion and fission of mem-

branes, changes in mitochondrial dynamics also drive

mitochondrial turnover. Hence mitochondrial hyperfusion

can slow down axonal transport in neurons (Takihara et al.

2015) or inhibit mitophagy and worsen the quality of the

pool of mitochondria (Park et al. 2010), which can lead to

sarcopenia in muscle (Leduc-Gaudet et al. 2015). Increas-

ing the expression of mitophagy protein PARKIN appears

to improve mitochondrial turnover and reduce ageing in

flies (Rana et al. 2013). Ferree et al. have shown that the

turnover is also important to keep mitochondria ‘‘young’’

(Ferree et al. 2013). Recently resveratrol, which has a

positive effect on lifespan, was shown to activate the

Pink1/Parkin pathway by upregulating the glutathione

levels in cells (Das et al. 2014). Finally, it is to be noted

that lifelong caloric restriction results in a change in

mitochondrial size and mass as well as ultrastructure

(Khraiwesh et al. 2014). This also could be explained by a

higher turnover rate and an overall improved mitochondrial

quality.

Effects of mitochondrial stress on lifespan can be

rescued by UPRmt activation

UPRmt is a stress response triggered by the accumulation

of unfolded protein in mitochondria. It promotes expres-

sion of mitochondrial chaperones (Durieux et al. 2011),

limits protein import (Wrobel et al. 2015) and reduces

mitochondrial translation (Haynes et al. 2013). The
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accumulation of unfolded proteins in mitochondria has

been shown to induce nuclear genes encoding mitochon-

drial stress proteins such as Cpn60 and Cpn10 (Zhao et al.

2002). This response was shown to be transient and to

correlate with the level of aggregates and is regulated by

CHOP and C/EPBb. Some factors have been involved in

UPRmt, such as HAF-1, a matrix protein exporter to export

unfolded peptides (Haynes et al. 2010). Another mito-

chondrial stress sensor is the transcription factor, ATFS-1;

in control conditions, it is imported in the mitochondria and

degraded. When mitochondria are stressed, the import is

less efficient and a fraction of ATFS-1 accumulates in the

cytosol, allowing it to be imported in the nucleus, where it

triggers transcription of the UPRmt genes (Nargund et al.

2012). It has been recently shown to bind to OXPHOS

genes promoter. This limits the amount of transcripts

during UPRmt and promotes the OXPHOS complex

assembly and function (Nargund et al. 2015). Recently,

CLK-1, a monooxygenase known to be mitochondrial and

having a role in respiration and longevity, has been shown

to translocate to the nucleus. This nuclear form of CLK-1

mediates a retrograde signalling pathway that responds to

mitochondrial ROS. It regulates both mitochondrial ROS

and UPRmt, and this signalling is conserved from worms to

humans (Monaghan et al. 2015). The unfolded protein

degradation into peptides involves the proteases CLPxP

(Haynes et al. 2010) and Lon (Bezawork-Geleta et al.

2015). Lon appears to clear misfolded and not aggregated

proteins (Bezawork-Geleta et al. 2015).

This stress response has been related to ageing and

lifespan as, as stated earlier, a knockdown of CCO-1 in

C.elegans moderately affects the ETC and increases

longevity in an UPRmt-dependent way (Durieux et al.

2011). Work in fungi has also shed light on the involve-

ment of UPRmt in longevity as an overexpression of the

Lon protease in Podospora anserine leads to an increase in

ATP-dependent serine protease activity. These fungi have

less carbonaylated and carboxymethylated proteins and

less H2O2 secreted resulting in an increase in lifespan and

healthspan (Luce and Osiewacz 2009). Similarly mice

knocked out for Surf1 (Surfeit locus protein 1, helps in the

initial assembly of 13 subunits of the cytochrome c oxi-

dase) are viable, displaying a decrease of more than 50 %

in COX activity and have a longer lifespan. They appeared

to have the same amount of ROS, membrane potential,

ATP production and respiration in heart and muscle than

controls. However, these mice have a mitochondrial energy

metabolism decrease, which is combined to an increase in

mitochondrial biogenesis markers, Nrf2 pathway and

UPRmt. This indicates that mitochondrial dysfunction can

lead to the induction of the mitochondrial stress pathway to

confer protective effects (Pulliam et al. 2014). However,

some work in C.elegans has recently challenged this

relation between UPRmt and lifespan. There was no cor-

relation between lifespan (positively or negatively) and

UPRmt in an RNAi screen. Neither knockdown nor sta-

bilisation of ATFS-1 affected the lifespan of the worms

(Bennett et al. 2014).

Mitophagy declines during ageing: from humans

through to fungi

There is accumulating evidence that genetically increasing

autophagy delays ageing in flies (Ulgherait et al. 2014),

worms (Schiavi et al. 2015) and mice (Wu et al. 2013).

Given that mitochondria are implicated in ageing, the

increase in mitophagy that accompanies activation of

autophagy could underlie this. Indeed, the importance of

mitophagy in lifespan has been confirmed in drosophila

where overexpression of Parkin leads to increased lifespan

and decreased protein aggregation (Rana et al. 2013). Flies

have decreased dMFN levels, fragmented mitochondria

and show increased mitochondrial function. Parkin over-

expression also extends neuron longevity and reduces

protein aggregation in the brain. In C.elegans, mitophagy

has been shown to be required for longevity under condi-

tions of low-insulin/IGF-1 signalling or impaired mito-

chondrial function (Palikaras et al. 2015). Similarly feeding

worms with lithium, an inducer of macroautophagy,

improved lifespan and mitochondrial function (Tam et al.

2014). This group produced a mathematical model sug-

gesting that lifespan can be extended by a combination of

rapid mitochondrial fission, fusion and mitophagy to

maintain mitochondrial function. This is also supported by

the finding that mitophagy can be induced in response to

frataxin depletion and that this increases lifespan of the

worm (Schiavi et al. 2015).

The same kind of work has been carried out in the mouse

where old mice have been fed with trehalose, a mitophagy

inducer. These mice displayed an improvement of the levels

of the mitochondrial quality controls mediators, especially

PARKIN, BNIP3, SIRT3 and PGC1a, when compared to

controls mice (LaRocca et al. 2014). Their artery walls do

not stiffen and these results were reproduced ex vivo on

arterial rings. As reported earlier, caloric restriction diet

leads to increased mitophagy and decrease in both mito-

chondrial damage and markers of senescence in rats (Cui

et al. 2013). The PolG mutator mouse, which accumulates

mtDNA mutations and undergoes premature ageing and

sarcopenia, displays evidence of increased autophagy with

an increased expression of PGC1-a and mitochondrial

fragmentation when compared to age-matched control

(Joseph et al. 2013). In contrast to the other models dis-

cussed above, here the increased autophagy is insufficient to

enhance mitochondrial quality in the presence of massive

mtDNA damage (Li-Harms et al. 2015). Interestingly in
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humans, exercise, which has been shown to improve ageing

phenotype, induces an increase in levels of protein involved

in mitochondria biogenesis and mitochondrial dynamics

(Konopka et al. 2014).

Hence, decreased or dysregulated mitophagy likely

contributes to the decline in mitochondrial quality and

function that leads to the ageing phenotype. A recent study

has shown that in mouse and human, mitophagy is

impaired during ageing in muscle satellite cells (Garcia-

Prat et al. 2016). These are muscle-specific stem cells,

hence characterised by self-renewal and long life span,

potentially requiring mitophagy more than other cell types

(Phadwal et al. 2013). This decrease of mitophagy could be

due to an inflammation process as IL-10 null mice display a

better ageing phenotype than the control weight mice (Ko

et al. 2016).

Interestingly when mitophagy is impaired, mitochondria

send a retrograde signal through SKN-1, a transcription

factor that regulates both mitophagy and mitobiogenesis

(Palikaras et al. 2015). This mitochondria–nuclear cross-

talk important for mitochondria health and involving

mitophagy has also been highlighted in a nucleotide exci-

sion DNA repair disorder leading to neurodegeneration

(xeroderma pigmentosum group A). This disorder is char-

acterised by impaired mitophagy due to excessive PINK1

cleavage (Fang et al. 2014). This excessive processing

Fig. 1 Mitochondria quality

control improves the ageing

phenotype
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appears to be due to both an activation of PARP1 and an

attenuation of the NAD(?)-SIRT1-PGC1a pathway.

As one would expect, coordination between biogenesis

and recycling is needed to keep the pool of mitochondria

healthy. The decline in mitophagy with ageing (Diot et al.

2015) thus disadvantages both the turnover of dysfunc-

tional mitochondria and the production of fresh mito-

chondria, leading to a decreased life- and healthspan.

Finally, it is important to state that UPRmt and mito-

phagy are not working independently. Notably when

unfolded proteins were expressed in the mitochondrial

matrix, PINK1 accumulated on mitochondria able to

maintain their membrane potential (Jin and Youle 2013).

This resulted in a Parkin-dependant mitophagy. CLPxP is

not needed for this response but a knockdown of LonP

protease increases the accumulation of PINK1, which is not

due to a decrease in membrane potential. In drosophila, a

mild muscle mitochondrial distress preserved the mito-

chondria function as well as the muscle function and

architecture and resulted in a prolonged lifespan (Owusu-

Ansah et al. 2013). This beneficial result was abolished by

an increase in anti-oxidant. Two pathways were identified;

one through the UPRmt and the other one due to insulin

signalling antagonisation which facilitates mitophagy

(Owusu-Ansah et al. 2013). Forced expression of UPRmt

genes, such as Hsp60, or overexpression of ImpL2 alone

was sufficient to increase lifespan. The latter induced an

increase in lysosome biogenesis and an increase in mito-

phagy was observed, manifest as mitochondria engulfed by

autophagosomes.

Conclusions

In this review, we have seen that mitochondria play a role

in ageing at different levels (Fig. 1). First, the MRC as an

important source of ROS that increases as mitochondrial

quality declines. ROS production is indeed an important

feature of the ageing process, whether it induces oxidative

damage to proteins, lipids and DNA or acts as a signalling

molecule.

Second, through their relationship with the nucleus,

mitochondria affect nuclear gene expression. We now

know that nuclear–mitochondria crosstalk is not only in the

nucleus-to-mitochondria direction, via production and

import of the vast majority of the proteins necessary to

build a mitochondrion and regulation by sirtuins. The ret-

rograde response where mitochondria content and activity

regulate nuclear gene expression is also critically important

(Guantes et al. 2015, 2016). Overall the mitochondria

content and quality appear to be important features of the

ageing process. This is highlighted by the importance of

heteroplasmy for damaged mtDNAs, presumably due to a

decreased efficiency in energy production leading not only

to more ROS being produced but also to an effect on

telomere as it has recently been suggested.

These observations convince us that mitochondria

quality control has a very (maybe the most) important part

to play in the ageing process. By modulating mitophagy,

it may be possible to improve mitochondrial quality, limit

mtDNA damage, regulate ROS production to what is

necessary for signalling and keep the nuclear gene

expression to the pattern and levels of healthy young

cells.

UPRmt is one of these quality control pathways

although its role in longevity has been recently challenged.

Stimulating mitochondrial dynamics to keep a homogenous

functional mitochondrial network is another strategy that

might prolong the ‘‘young’’ state of cells. Mitophagy

coupled to mitobiogenesis stands out, however, as the most

promising, unambiguous and potent way to keep unaltered

mitochondria and thus ‘‘young’’ cells. Learning how to

stimulate mitophagy/mitobiogenesis should represent an

important research axis in therapeutics towards ageing-re-

lated disease.
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