586 research outputs found

    A simple model for the formation of vegetated dunes

    Full text link
    A simple model for the dynamics of dunes associated with vegetation is proposed. Using the model, formation processes of transverse dunes, parabolic dunes and elongated parabolic dunes according to two environmental factors: i)the amount of sand at the source, ii)the wind force, are simulated. The results have qualitative correspondence to the real counterpart, and the simplicity of the algorithm and the consequent easiness of the handling of this model provide us with wide applicability for the investigation of the complex interplay between vegetation and dunes.Comment: 4 figure

    A simple model for a transverse dune field

    Full text link
    We present a simple one-dimensional model to describe the evolution of a transverse dune field. The model is characterized by the distances between the dunes and their heights, which determine the inter-dune sand flux. The model reproduces the observation that the dunes in a given field have approximately all the same height. We find that this result is independent of the initial configuration of the field, as well as of coalescence effects between migrating dunes. The time for the final state to be reached is studied as a function of the relevant phenomenological parameters

    Model for a dune field with exposed water table

    Full text link
    Aeolian transport in coastal areas can be significantly affected by the presence of an exposed water table. In some dune fields, such as in Len\c{c}\'ois Maranhenses, northeastern Brazil, the water table oscillates in response to seasonal changes of rainfall and rates of evapotranspiration, rising above the ground during the wet season and sinking below in the dry period. A quantitative understanding of dune mobility in an environment with varying groundwater level is essential for coastal management as well as for the study of long-term evolution of many dune fields. Here we apply a model for aeolian dunes to study the genesis of coastal dune fields in presence of an oscillating water table. We find that the morphology of the field depends on the time cycle, TwT_{\mathrm{w}}, of the water table and the maximum height, HwH_{\mathrm{w}}, of its oscillation. Our calculations show that long chains of barchanoids alternating with interdune ponds such as found at Len\c{c}\'ois Maranhenses arise when TwT_{\mathrm{w}} is of the order of the dune turnover time, whereas HwH_{\mathrm{w}} dictates the growth rate of dune height with distance downwind. We reproduce quantitatively the morphology and size of dunes at Len\c{c}\'ois Maranhenses, as well as the total relative area between dunes.Comment: 12 pages, 12 figure

    Origin of the Sinai-Negev erg, Egypt and Israel: mineralogical and geochemical evidence for the importance of the Nile and sea level history

    Get PDF
    The Sinai-Negev erg occupies an area of 13,000 km2 in the deserts of Egypt and Israel. Aeolian sand of this erg has been proposed to be derived from the Nile Delta, but empirical data supporting this view are lacking. An alternative source sediment is sand from the large Wadi El Arish drainage system in central and northern Sinai. Mineralogy of the Negev and Sinai dunes shows that they are high in quartz, with much smaller amounts of K-feldspar and plagioclase. Both Nile Delta sands and Sinai wadi sands, upstream of the dunes, also have high amounts of quartz relative to K-feldspar and plagioclase. However, Sinai wadi sands have abundant calcite, whereas Nile Delta sands have little or no calcite. Overall, the mineralogical data suggest that the dunes are derived dominantly from the Nile Delta, with Sinai wadi sands being a minor contributor. Geochemical data that proxy for both the light mineral fraction (SiO2/10-Al2O3 + Na2O + K2O-CaO) and heavy mineral fraction (Fe2O3-MgO-TiO2) also indicate a dominant Nile Delta source for the dunes. Thus, we report here the first empirical evidence that the Sinai-Negev dunes are derived dominantly from the Nile Delta. Linkage of the Sinai-Negev erg to the Nile Delta as a source is consistent with the distribution of OSL ages of Negev dunes in recent studies. Stratigraphic studies show that during the Last Glacial period, when dune incursions in the Sinai-Negev erg began, what is now the Nile Delta area was characterized by a broad, sandy, minimally vegetated plain, with seasonally dry anastomosing channels. Such conditions were ideal for providing a ready source of sand for aeolian transport under what were probably much stronger glacial-age winds. With the post-glacial rise in sea level, the Nile River began to aggrade. Post-glacial sedimentation has been dominated by fine-grained silts and clays. Thus, sea level, along with favorable climatic conditions, emerges as a major influence on the timing of dune activity in the Sinai-Negev erg, through its control on the supply of sand from the Nile Delta. The mineralogy of the Sinai-Negev dunes is also consistent with a proposed hypothesis that these sediments are an important source of loess in Israel

    Observation of Density Segregation inside Migrating Dunes

    Get PDF
    Spatiotemporal patterns in nature, such as ripples or dunes, formed by a fluid streaming over a sandy surface show complex behavior despite their simple forms. Below the surface, the granular structure of the sand particles is subject to self-organization processes, exhibiting such phenomena as reverse grading when larger particles are found on top of smaller ones. Here we report results of an experimental investigation with downscaled model dunes revealing that, if the particles differ not in size but in density, the heavier particles, surprisingly, accumulate in the central core close to the top of the dune. This finding contributes to the understanding of sedimentary structures found in nature and might be helpful to improve existing dating methods for desert dunes.Comment: 4 pages, 5 figures, submitted to Physical Review E Rapid Communications, in prin

    Morphology, Development, and Sediment Dynamics of Elongating Linear Dunes on Mars

    Get PDF
    Linear dunes occur on planetary surfaces, including Earth, Mars, and Titan, yet their dynamics are poorly understood. Recent studies of terrestrial linear dunes suggest they migrate by elongation only in supply limited environments. Here, we investigate elongating linear dunes in the Hellespontus Montes region of Mars which are morphologically similar to terrestrial systems. Multi‐temporal, high‐resolution orbital images show these linear dunes migrate by elongation only and that the fixed sediment source of the dunes probably restricts any lateral migration. Some linear dunes maintain their along length volume and elongate at rates comparable to adjacent barchans, whereas those which decrease in volume show no elongation, suggesting they are near steady state, matching morphometric predictions. Limited sediment supply may restrict Martian linear dunes to several kilometers, significantly shorter than many terrestrial linear dunes. Our results demonstrate the close similarities in dune dynamics across the two planetary surfaces

    Analysis of Saharan dust intrusions into the Carpathian Basin (Central Europe) over the period of 1979–2011

    Get PDF
    Aeolian dust particles and dust storms play substantial role in climatic and other environmental processes of the Earth system. The largest and most important dust source areas are situated in the Sahara, from where several hundred thousand tons of mineral dust is emitted each year and transported towards the European continent. Here we show that 130 Saharan dust events (SDEs) reached the atmosphere of the Carpathian Basin from 1979 to 2011 by using the NASA's daily TOMS Aerosol Index data, satellite images and backward trajectory calculations of NOAA HYSPLIT model. Monthly trends of dust events demonstrate that the main period of dust transportation is in the spring, with a secondary maximum in the summer (in July and August). This seasonal distribution match well the seasonality of Saharan dust emissions. However synoptic meteorological conditions govern primarily the occurrence of long-range dust transport towards Central Europe. Based on their different meteorological backgrounds (geopotential field, wind vector and meridional flow), SDEs were classified into three main types. By using composite mean maps of synoptic situations and backward trajectories, the possible source areas have also been identified for the different types of events. Finally, we provide a short discussion on how the African mineral dust could contribute to the local aeolian sedimentation of the Carpathian Basin during the Plio-Pleistocene
    corecore