440 research outputs found

    Multiple H-Rearrangements in 10-Benzylthio-dithranol Radical Cations

    Get PDF
    10-Alkylthio- and 10-arylthio-derivatives of dithranol (anthralin; 1,8-dihydroxy-9-anthrone) are of interest in search for new anti-psoriatic agents2 , 3 ). By working out ms procedures for unequivocal identification of trace amounts of these compounds4 ) it was established that in case of 10-phenylthio-dithranol putative by-products, especially one giving rise to ions at m/z = 226 (dithranol), are artefacts of thermal reaction in the mass spectrometer1). In the EI-MS of those 10-substituted dithranols containing a S-CH2R chain, however, these ions (m/z = 226) arise from M + * as well. Scope and mechanism of their formation was examined by analyzing compound 1 and its D-labelled derivatives 2 and 3

    Psychophysical and physiological evidence for fast binaural processing

    Get PDF
    The mammalian auditory system is the temporally most precise sensory modality: To localize low-frequency sounds in space, the binaural system can resolve time differences between the ears with microsecond precision. In contrast, the binaural system appears sluggish in tracking changing interaural time differences as they arise from a low-frequency sound source moving along the horizontal plane. For a combined psychophysical and electrophysiological approach, we created a binaural stimulus, called "Phasewarp," that can transmit rapid changes in interaural timing. Using this stimulus, the binaural performance in humans is significantly better than reported previously and comparable with the monaural performance revealed with amplitude-modulated stimuli. Parallel, electrophysiological recordings of binaural brainstem neurons in the gerbil show fast temporal processing of monaural and different types of binaural modulations. In a refined electrophysiological approach that was matched to the psychophysics, the seemingly faster binaural processing of the Phasewarp was confirmed. The current data provide both psychophysical and physiological evidence against a general, hard-wired binaural sluggishness and reconcile previous contradictions of electrophysiological and psychophysical estimates of temporal binaural performance

    Classification of human breathing sounds by the common vampire bat, Desmodus rotundus

    Get PDF
    BACKGROUND: The common vampire bat Desmodus rotundus is one of three bat species that feed exclusively on the blood of mammals often more than 1000 times its size. Vampire bats even feed on human blood. Moreover, they tend to feed on the same individual over consecutive nights. RESULTS: Using psychoacoustical methods, we show that vampire bats can recognize individual humans by their breathing sounds. Accompanying psychoacoustical experiments using the same stimuli and procedure but with human listeners show that even these trained and instructed listeners were unable to achieve the vampire bats' performance under the most difficult conditions, where the breathing sounds had been recorded under physical strain. CONCLUSION: It is suggested that vampire bats can make use of an individual acoustic signature imposed on breathing sounds in a way similar to that in which we identify humans by their vocalizations

    Sonar beam dynamics in leaf-nosed bats

    Get PDF
    Ultrasonic emissions of bats are directional and delimit the echo-acoustic space. Directionality is quantified by the aperture of the sonar beam. Recent work has shown that bats often widen their sonar beam when approaching movable prey or sharpen their sonar beam when navigating through cluttered habitats. Here we report how nose-emitting bats, Phyllostomus discolor, adjust their sonar beam to object distance. First, we show that the height and width of the bats sonar beam, as imprinted on a parabolic 45 channel microphone array, varies even within each animal and this variation is unrelated to changes in call level or spectral content. Second, we show that these animals are able to systematically decrease height and width of their sonar beam while focusing on the approaching object. Thus it appears that sonar beam sharpening is a further, facultative means of reducing search volume, likely to be employed by stationary animals when the object position is close and unambiguous. As only half of our individuals sharpened their beam onto the approaching object we suggest that this strategy is facultative, under voluntary control, and that beam formation is likely mediated by muscular control of the acoustic aperture of the bats' nose leaf

    Stereochemical Studies on a New Ciramadol Analogue by NMR-Spectroscopy

    Get PDF
    The absol. configuration of a Ciramadol analogue obtained from (-)-menthone is established by 'H-NMR-. simulated NMR-, COSY-90-, and NOEmeasurements. The final compound 2-(a-1 -pyrrolidino)benzy 1-4-isopropyl- 1 -methyl-cyclohexan-3-one (4b), e.g.. has 1R.2S,4S.l IS-configuration due to stereoselective Michael-type addition of pyrrolidine to the pertinent benzylidene intermediate 3. Die absol. Konfiguration einer Ciramadol-analogen Verbindung aus (-)- Menthon wurde durch 'H-NMR-. simulierte NMR-. COSY-90- und NOEUntersuchungen geklärt. Danach hat die als Beispiel untersuchte Verbindung 2-(a-1 -Pyrrolidino)benzyl-4-isopropyl-1 -methyl-cyclohexan-3-on (4b) 1R,2S.4S.l IS-Konfiguration, die durch eine stereoselektive Michael-analoge Addition des Pyrrolidins an die entspr. Benzyliden-Verbindung 3 entsteht

    Self-motion facilitates echo-acoustic orientation in humans

    Get PDF
    The ability of blind humans to navigate complex environments through echolocation has received rapidly increasing scientific interest. However, technical limitations have precluded a formal quantification of the interplay between echolocation and self-motion. Here, we use a novel virtual echo-acoustic space technique to formally quantify the influence of self-motion on echo-acoustic orientation. We show that both the vestibular and proprioceptive components of self-motion contribute significantly to successful echo-acoustic orientation in humans: specifically, our results show that vestibular input induced by whole-body self-motion resolves orientation-dependent biases in echo-acoustic cues. Fast head motions, relative to the body, provide additional proprioceptive cues which allow subjects to effectively assess echo-acoustic space referenced against the body orientation. These psychophysical findings clearly demonstrate that human echolocation is well suited to drive precise locomotor adjustments. Our data shed new light on the sensory-motor interactions, and on possible optimization strategies underlying echolocation in humans
    • …
    corecore