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Abstract 

Aim 
Ideally, datasets for species distribution modelling (SDM) contain evenly sampled 

records covering the entire distribution of the species, confirmed absences and 

auxiliary ecophysiological data allowing informed decisions on relevant predictors. 

Unfortunately, these criteria are rarely met for marine organisms for which 

distributions are too often only scantly characterized and absences generally not 

recorded. Here, we investigate predictor relevance as a function of modelling 

algorithms and settings for a global dataset of marine species. Furthermore, we 

promote the usage of a standardized benchmark dataset (MarineSPEED) for 

methodological SDM studies. 

Location 
Global marine. 

Methods 
We selected well studied and identifiable species from all major marine taxonomic 

groups. Distribution records were compiled from public sources (e.g. OBIS, GBIF, 

Reef Life Survey) and linked to environmental data from Bio-ORACLE and MARSPEC. 

Using this dataset, predictor relevance was analysed under different variations of 

modelling algorithms, numbers of predictor variables, cross-validation strategies, 

sampling bias mitigation methods, evaluation methods and ranking methods. SDMs 

for all combinations of predictors from 8 correlation groups were fitted and ranked, 

from which the top five predictors were selected as the most relevant. 

Results 
We collected two million distribution records from 514 species across 18 phyla and 

made them available with associated environmental data and cross-validation splits 

through the R package marinespeed and at http://marinespeed.org. Mean sea 

surface temperature and calcite are respectively the most relevant and irrelevant 

predictors. A less clear pattern was derived from the other predictors. The biggest 

differences in predictor relevance were induced by varying the number of 

predictors, the modelling algorithm and the sample selection bias correction. 

Main conclusions 
While temperature is a relevant predictor of global marine species distributions, 

considerable variation in predictor relevance is linked to the SDM setup. Future 

methodological SDM studies should consider the use of a benchmark dataset.  

http://marinespeed.org/
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Introduction 
Species distributions are increasingly modelled for conservation and ecological 

purposes. A better understanding of the mechanisms shaping species distributions 

allows for more accurate predictions of the future distribution of species in a rapidly 

changing world (Franklin, 2009). Climatological conditions are currently changing at 

an unprecedented rate and anthropogenic activities displace species out of their 

native area across the globe resulting in biological invasions (Walther et al., 2009). 

A mechanistic link between the abiotic factors and the species distributions is 

traditionally gleaned from physiological studies subjecting individuals to various 

environmental conditions and assessing their reaction norms. However, not all 

species lend themselves equally well to ex situ experiments. Also, the experimental 

setup may only approximate realistic environmental conditions to a limited degree. 

Furthermore, such physiological studies typically require prior knowledge on the 

ecological factors governing the distribution ranges (Kearney & Porter, 2009). Given 

these difficulties, species distribution modelling (SDM), alternatively known as 

Ecological Niche Modelling (ENM), offers an attractive alternative (Elith et al., 2010). 

SDM correlates species occurrences, and optionally absences, with environmental 

data to create an estimation of the ecological niche and a projection in geographic 

space of this niche (Austin, 2002). The obvious advantage of correlative SDMs is that 

they require little knowledge of the mechanistic links between organisms and their 

environments. Thanks to the availability of an increasing number of online 

distribution records (e.g. OBIS, GBIF), pre-processed environmental data layers (e.g. 

Worldclim, Climond, Bio-ORACLE, MARSPEC) and modelling algorithms accessible 

through various statistical packages, SDM has become a widely applied technique in 

ecology and conservation biology (Pacifici et al., 2017). 

Despite this, studies on general SDM theory and methodology mostly focus on the 

terrestrial environment (reviewed in Franklin 2009; Elith & Leathwick 2009; Peterson 

et al. 2011). A minority of papers specifically address distribution modelling methods 

in the marine environment: presence-only algorithms (Cheung et al., 2008; Ready et 

al., 2010; Beaugrand et al., 2011), algorithm comparisons (MacLeod et al., 2008; 

Palialexis et al., 2011; Šiaulys & Bučas, 2012), 3D modelling (Bentlage et al., 2013), 

rare species (Stirling et al., 2016), joint SDMs (Torres et al., 2008), ensemble 

modelling (Downie et al., 2013), scale effects (Pittman & Brown, 2011; Nyström 

Sandman et al., 2013), null models (Merckx et al., 2011), model selection 

(Verbruggen et al., 2013), pseudo-absence generation (Huang et al., 2011; Coro et 

al., 2016) and predictor datasets (Tyberghein et al., 2012; Sbrocco & Barber, 2013). 
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Although the importance of selecting biologically relevant predictors, and its impact 

on model uncertainty and transferability has been highlighted by several studies 

(Araújo & Guisan, 2006; Barry & Elith, 2006; Synes & Osborne, 2011; Braunisch et al., 

2013; Verbruggen et al., 2013; Petitpierre et al., 2017) to date no comprehensive 

study on the relevance of the predictors of marine species distributions across taxa 

has been performed. But, note that Bradie & Leung (2016), in their meta-analysis on 

variable importance from MaxEnt SDMs, included a limited set of marine species. 

Bradie & Leung (2016) found that temperature and to a smaller extent bathymetry 

and salinity contributed the most to marine species distribution models. While the 

impact of geographic scale, algorithm and pseudo-absence selection on the 

importance of predictors have been addressed to some degree (VanDerWal et al., 

2009; Elith et al., 2010; Nyström Sandman et al., 2013; Bucklin et al., 2015) the 

impact of these and other aspects of SDM have not been studied on a global scale. 

In this study, we created the Marine SPEcies with Environmental Data 

(MarineSPEED) dataset. This benchmark dataset, containing distribution records 

belonging to 514 well-studied taxa with a broad taxonomic, climatologic and 

geographic diversity, is used to investigate marine predictor relevance under an 

array of modelling parameters and algorithms. With this, we aim to answer two 

questions: (1) what are the most relevant predictors of marine species distributions 

and (2) which part of the SDM process impacts the relevance of predictors the most. 

Additionally, this study aims to promote the usage of benchmark datasets in 

methodological SDM studies as this allows for reproducible and comparable results. 

Methods 

Species data 
For the marine species benchmark dataset we selected species from an array of 

taxonomic groups, climatological preferences and distribution patterns. We aimed 

to include species that are well-studied in terms of their distribution and that often 

would classify as iconic species. For a species to be considered we required the 

availability of at least 100 distribution records in public databases. 

Species distribution records were collected from the Ocean Biogeographic 

Information System (OBIS; iobis.org, accessed February 2016), from the Global 

Biodiversity Information Facility (GBIF; gbif.org, accessed January 2016), the Reef 

Life Survey (RLS; reeflifesurvey.com, accessed February 2016) and for a few species 

via personal communications. For downloading the records from OBIS and GBIF the 

R (R Core Team, 2016) clients robis (Provoost et al., 2016) and rgbif (Chamberlain et 

http://iobis.org/
http://gbif.org/
http://reeflifesurvey.com/
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al., 2016a) were used, respectively. A list of data sources is found in Appendix S1 in 

Supporting information. The distribution records were subsequently filtered until 

only one record remained in each cell of an equal-area grid with a per cell area of 25 

square kilometres. This step eliminates duplicated records from different data 

sources and limits the number of records from repeated sampling events in the 

same area. We also removed records located within the land mask of the 

environmental data. Finally the distributions for all species were visually inspected 

and cross-checked with available distribution information in order to eliminate 

erroneous records. The amount of sample selection bias was assessed by visually 

comparing the spread of the occurrence records with the distribution range of the 

species and attributing a score ranging from 1 (low bias) to 5 (high bias). 

We collected for each species taxonomic and functional group information from the 

World Register of Marine Species (WoRMS Editorial Board, 2016). The ‘functional 

group’ trait divides species into three groups reflecting their habitat: benthos, 

nekton and plankton (zooplankton and phytoplankton). For species lacking trait data 

in WoRMS, this information was derived from FishBase (Froese et al., 2017) and 

SeaLifeBase (Palomares et al., 2017) whereby all seafloor associated species were 

classified as benthos (i.e. sessile, reef-associated or demersal species), other free 

swimming species as nekton and drifting species as plankton. Additionally, we 

identified the latitudinal zones (‘polar’, ‘temperate’, ‘tropical’) for each distribution 

range. To do this, we checked for the presence of at least five per cent of all 

occurrence records of a species in each latitudinal zone of the marine ecoregions 

classification by Spalding et al. (2007). Lastly, species were categorized as oceanic if 

more than five per cent of their records are located outside the marine ecoregions. 

Else, species were considered as neritic. 

Environmental data 
The distribution records in the MarineSPEED dataset were linked to all 71 monthly 

and annual environmental variables for the current climate available from Bio-

ORACLE (Tyberghein et al., 2012) and MARSPEC (Sbrocco & Barber, 2013) with a 

spatial resolution of 5 arcmin using the R package sdmpredictors (Bosch et al., 2016). 

This environmental data includes variations of sea surface temperature, salinity, 

bathymetry, nutrients and other predictors of marine species distributions. 

Background data 
Most presence-only SDM methods use background or pseudo-absence points for 

building models (Franklin, 2009). In order to facilitate the reproducibility of different 

studies using MarineSPEED we included a set of 20.000 randomly sampled 

background points in the benchmark dataset. We also created a second set of 

target-group background points by randomly sampling 20.000 points from the full 
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set of distribution records. The latter show the same bias as the occurrence records 

and therefore can be used to mitigate the effect of sample selection bias on 

presence-only species distribution models (Phillips et al., 2009; Kramer-Schadt et al., 

2013; Syfert et al., 2013). 

Cross-validation splits 
Cross-validation (CV) is a widespread strategy used to perform model selection while 

avoiding under- and overfitting models (Arlot & Celisse, 2010). We prepared CV folds 

for the species and background data using three different strategies. As a first 

strategy we partitioned the data randomly in five folds (random CV). This strategy is 

easy to perform but has as disadvantage that it results in an overestimated 

performance of the model because training and validation points selected from 

nearby locations will be dependent due to the effect of spatial autocorrelation (Bahn 

& McGill, 2007; Hijmans, 2012; Roberts et al., 2016). As CV only avoids overfitting 

when training samples are independent from the validation samples this generally 

leads to the selection of complex models with poor transferability (Arlot & Celisse, 

2010; Verbruggen et al., 2013; Petitpierre et al., 2017). The second (disc-based CV) 

and third (grid-based CV) splitting strategies take into account the spatial nature of 

the data. The 5-fold disc-based strategy randomly samples a starting point and 

subsequently selects the nearest one fifth of all distribution records to get the first 

fold. Then the distribution record furthest away from the starting point is used as a 

new starting point and the nearest one fifth of the distribution records are included 

to create the second fold. This process is repeated five times until all records are 

assigned to a fold. For the 4-fold grid-based strategy records are split into two sets 

based on their longitude using a random meridian as a dividing line. Then these two 

halves are separately split in two equal parts using parallels. Additionally, 9-fold grid-

based sets were created by using two meridians and parallels for splitting instead of 

one. By combining the disc- or grid-based CV strategies with the pairwise distance 

sampling method proposed by Hijmans (2012) to select the pseudo-absence points 

for the test set spatial sorting bias was eliminated and thus the effect of spatial 

autocorrelation on the performance evaluation supressed (Bahn & McGill, 2007; 

Roberts et al., 2016). In order to remove false negatives in the training sets of the 

spatial cross-validation sets we excluded background points from the training sets 

that are within 200 km of test occurrences. 

Predictor relevance 
In order to find out which predictors are most relevant for the set of species in 

MarineSPEED we ranked distribution models fitted for all combinations of predictors 

from multiple correlation groups. In addition, we added variation at the different 

steps of the model creation to assess the variability in predictor relevance under 

different model setups (Fig. 1). 
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Following the methodology from Barbet-Massin & Jetz (2014), who identified 

relevant predictors of bird distributions, distributions were modelled for all 

combinations of three, four and seven environmental predictors selected from eight 

correlation groups. After filtering the initial set of 68 predictors down to 19 

predictors based on a Pearson product moment correlation coefficient larger than 

0.95 we created correlation groups with the R package sdmpredictors by grouping all 

predictors for which some or all of the predictors have an absolute Pearson product 

moment correlation coefficient larger than 0.7 (Dormann et al., 2013; Barbet-Massin 

& Jetz, 2014). This resulted in 8 correlation groups of which 6 predictors form a 

group on their own (shore distance, bathymetry, SST (range), calcite, salinity, pH), 7 

predictors belong to the “Chlorophyll a group”, grouping chlorophyll a and diffuse 

attenuation (mean, minimum, maximum and/or range) related variables. The last 6 

predictors form the “SST group” with variations of sea surface temperature (SST), 

photosynthetically active radiation (PAR), phosphate, nitrate and silicate. For a full 

overview of the different environmental predictors used and the correlation group 

they belong to we refer to Fig. 2 and to Table S1 in Appendix S3. 

 
Figure 1. Overview of the predictor selection analysis and the different steps where variations were 

introduced. Starting from 19 environmental predictors, from Bio-ORACLE and MARSPEC, correlation 

groups where created. From this all possible predictor combinations were generated for models with 

three, four and seven predictors. After optional sample selection bias mitigation, occurrence records 

and background points were split in random or spatial cross-validation folds. SDMs were build using 

four algorithms (random forests, MaxEnt, generalized linear models and Bioclim) and evaluated using 

the area under the curve of the receiver operating characteristic (AUC) and the point-biserial 

correlation (COR). Predictors were ranked based on the performance of the models they were included 

in. 
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Figure 2. Correlation matrix for all environmental predictors considered for the predictor selection 

analysis, sorted by correlation group. Note that for creating the correlation groups, predictors are 

grouped when the absolute correlations between two or more members of a correlation group is more 

than 0.70. Red indicates a high positive correlation, yellow no correlation and blue a high negative 

correlation. 

SDMs were fitted using four commonly used algorithms: Bioclim (Booth et al., 2014), 

Generalized Linear Model (GLM), Maximum Entropy modelling (Maxent, Phillips et 

al. 2004) and Random Forests (RF, Breiman 2001). We used the dismo package 

(Hijmans et al., 2016) in R for fitting Bioclim and MaxEnt models and the R package 

randomForest (Liaw & Wiener, 2002). For all algorithms the default settings were 

used and GLMs were run with only linear features. 

Three variations of sample selection bias correction were performed: 1) no 

correction, 2) spatial thinning (50 km) with the R package spThin (Aiello-Lammens et 

al., 2015) and a target-group background (Phillips et al., 2009). Performance of the 

models was evaluated using random as well as spatial disc-based cross-validation. In 

total six million models were fitted and evaluated using the area under the receiver 

operating characteristics (ROC) curve (AUC) (Hanley & McNeil, 1982), and the point-

biserial correlation (COR) (Zheng & Agresti, 2000; Elith et al., 2006) on the UGent 

High Performance Cluster. 

Predictors where ranked for each model setup, evaluation metric and species 

combination by ranking the mean or median performance of all models a predictor 

was used in and by using the Rank Centrality algorithm (Negahban et al., 2017). Rank 
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Centrality is an iterative algorithm for rank aggregation using pairwise-wise 

comparisons. 

Results 

Benchmark data set 
The MarineSPEED benchmark dataset is composed of 514 species with an original 

total of two million distribution records which have been filtered down on a 25 km² 

grid to nearly nine hundred thousand records. On a species level the median number 

of filtered distribution records is 506 with a minimum of 52 and a maximum of 

45,469. An overview of the information on the species is available in Appendix S2. 

A total of 18 different phyla are included in MarineSPEED (Fig. 3), with as most 

represented phyla: Chordata (245 species), Mollusca (62 species), Echinodermata 

(38 species), Arthropoda (36 species) and Annelida (32 species). The phylum 

Chordata is mostly represented by the class Actinopterygii (184 species), and to a 

lesser extent Elasmobranchii (20 species) and Mammalia (18 species). Marine 

primary producers, various groups of algae and seagrasses, are represented by 49 

species from 5 phyla. When classifying species into functional groups we see that 

395 species are associated with the seafloor (benthos), while 87 species are free 

swimming (nekton) and 32 species are planktonic. While we aimed to select species 

from different parts of the world a bias towards a few well-researched areas (e.g. 

the North-Atlantic and Australia) was unavoidable (Fig. 4). Likewise, coastal areas 

(442 species) are overrepresented compared to open ocean habitats (72 species). 

On a latitudinal scale, temperate regions are the most represented with 173 species. 

91 species only occur in the tropics and 11 species in the polar regions. When 

considering the sample selection bias criterion we see that 59 species have a very 

low degree of sample selection bias (value 1), that most species have value 2 (103 

species), 3 (156 species) or 4 (178). Only 18 species were assessed as having a very 

high degree of sample selection bias. 

The predefined spatial cross-validation splits all considerably increase the distance 

between test points and their nearest training point as compared to random splits 

(Fig. S1 in Appendix S3). Examples of the various cross-validation strategies are 

visualised for Didemnum maculosum Milne Edwards and Polycarpa aurata Quoy & 

Gaimard in Fig. S2 and S3, respectively in Appendix S3. 
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Figure 3. Taxonomic composition of the MarineSPEED dataset on level kingdom, phylum or class. For 

the kingdom Animalia the most abundant phylum Chordata was split up into the Actinopterygii and 

other Chordata, the kingdom Plantae was left as one whole and labelled as algae and seagrasses. 

Numbers represent the number of species in each taxonomic group. 

 

Figure 4. Map of the number of species occurring in each cell of an equal-area grid with a per cell area 
of 25 km² (Behrmann cylindrical equal-area projection). 

Predictor relevance 
A first set of analyses exploring the selection of relevant predictors (Fig. 5), highlights 

the importance of mean sea surface temperature (SST (mean)) as the most relevant 

predictor of the species distributions in the MarineSPEED benchmark dataset. This 

result appears robust regardless of modelling algorithms, sample selection bias 

correction, cross-validation, number of predictors, evaluation metrics and ranking 
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methods. At the other end of the spectrum, calcite is apparently irrelevant as a 

predictor for most of the species distributions. As for the other predictors, however, 

there is substantial variation across species and modelling parameters. 

Among the different algorithms, GLMs with linear features caused the most 

variation in the predictor top 5 rankings with a particularly strong effect on SST 

(mean) with a minimal decrease of 28% in the median percentage of species with 

SST (mean) in the top 5 ranking (Table 1). Conversely in GLMs bathymetry was 

selected at least 26% more. The difference between the two evaluation metrics AUC 

and COR on the other hand was fairly limited with salinity displaying the largest 

difference. Finally the ranking method showed very small differences between the 

mean and median ranking algorithm. The rank centrality algorithm consistently 

ranked the predictors from the “Chlorophyll a group” as less relevant, while 

increasing the ranking of salinity (+16%) bathymetry (+15%), pH (+13%) and shore 

distance (+13%). 

 
Figure 5. Percentage of species a predictor has a top 5 ranking in the different model setups. In grey are 
the predictors that form a correlation group on their own, in green the predictors from the “Chlorophyll 
a group” and in red the predictors from the “SST group”. The results are aggregated from all possible 
variations. For a detailed view on the different dimensions of the variations we refer to tables 1 to 3, 
and to the following plots in Appendix S3: modelling algorithms (Fig. S4), evaluation metrics (Fig. S5), 
ranking methods (Fig. S6), cross-validation strategies (Fig. S7), predictor counts (Fig. S8), sampling bias 
mitigation methods (Fig. S9), cross-validation folds (Fig. S10) and taxonomic groups (Fig. S11). 
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When comparing the results of CV splitting strategies, number of predictors, 

sampling bias mitigation and fold number (Table 2), we can conclude that the 

number of predictors allowed in the model has the largest effect. Increasing the 

number of allowed predictors from 3 to 7 causes a decline in the relevance of 

bathymetry (-31%) and shore distance (-26%) while increasing the relevance of PAR 

(max) (+17%), diffuse attenuation (max) (+14%) and chlorophyll a (max and range) 

(+13%). The second largest effect is caused by using a target-group background in 

order to mitigate the effect of sampling bias on SDMs with a decrease of 25% for 

bathymetry and 15% for shore distance and an increase of 12% for nitrate. When 

using the disc-based CV strategy the relevance of SST (mean) and salinity decreased 

with 19 and 10%, respectively. Using the second fold instead of the first fold, which 

was only performed for the random CV strategy, only yielded small differences in the 

top 5 predictors of the species. 

While the relevance of most predictors, is similar across taxonomic groups, some 

predictors exhibit large differences (Table 3). This is especially the case for shore 

distance, bathymetry and SST (range) with differences between the minimum and 

maximum of 55, 40 and 33%, respectively. Despite these overall patterns in the 

median ranking values we see that the spread of the predictor relevance within 

taxonomic groups is large (Fig. S11). 

Table 4 presents the results related to the different traits of the species: functional 

group, neritic versus oceanic zone, ecoregion and sampling bias. Regarding the 

functional group some clear trends are visible whereby shore distance, bathymetry 

and to a lesser extent PAR (mean) are comparatively more relevant predictors for 

benthic species distributions, less relevant for nekton and least relevant for 

plankton. For mean and minimum diffuse attenuation we notice an inverse trend 

with a higher relevance for plankton in comparison to nekton and benthos. With 

respect to the zone trait we see that shore distance (-21%) and bathymetry (-14%) 

are less relevant for oceanic species, while phosphate (+15%), nitrate (+13%) and 

silicate (+15%) are more relevant. The results from the ecoregion trait show clear 

differences in predictor relevance for multiple predictors. For some predictors such 

as SST (range), nitrate and phosphate the relevance for temperate species clearly 

deviates from that for polar and tropical species. The predictor relevance for the 

different levels of sampling bias are all very similar. For boxplots of the relevance of 

the predictors for the different variations in model setup, taxonomic groups and 

traits we refer to Figs. S4 to S15 in Appendix S3. 
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Table 1. Median percentage of species for which a predictor has a top 5 ranking for the different setup variations that have been calculated for all models. First 
column shows the results for all models, the next four columns show the results for the different modelling algorithms, the next two columns show the breakdown 
for the evaluation metrics used. The last three columns show the results for the ranking methods. 

 
  

Algorithm Metric Ranking method 

Group Predictor All Bioclim GLM MaxEnt RF AUC COR Centrality Mean Median 

  Shore distance 35 29 22 39 40 36 34 44 31 27 

  Bathymetry 39 45 71 36 19 40 37 52 37 33 

  SST (range) 19 14 24 19 18 18 19 26 16 16 

  Salinity 23 16 15 25 37 18 26 33 17 16 

  Calcite 4 4 5 3 3 3 4 6 2 3 

  pH 18 8 24 14 23 17 18 26 12 13 

Chlorophyll a 

group 

Chlorophyll a (mean) 14 18 8 14 17 15 13 9 16 18 

Chlorophyll a (min) 18 22 4 21 21 17 18 6 22 22 

Chlorophyll a (max) 9 15 6 11 15 10 9 5 17 19 

Chlorophyll a (range) 8 11 7 9 13 8 9 3 13 15 

Diffuse attenuation (mean) 25 21 44 24 24 23 26 10 27 27 

Diffuse attenuation (min) 24 22 30 22 21 22 23 9 25 25 

Diffuse attenuation (max) 19 12 37 10 16 18 19 7 23 23 

SST Group 

SST (mean) 80 79 51 89 86 79 78 79 79 78 

PAR (mean) 48 53 49 48 41 46 49 51 46 46 

PAR (max) 23 22 30 20 15 20 24 26 17 22 

Phosphate 28 32 23 27 32 29 27 33 26 26 

Nitrate 39 41 31 41 44 41 33 41 38 37 

Silicate 32 27 29 32 36 32 31 36 29 31 
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Table 2. Median percentage of species for which a predictor has a top 5 ranking for the different setup variations that have been calculated for a subset of the 
models. In this table only results from setups that have been done for both options are shown. First column shows the results for all models, followed by the 
results for the 5-fold random and disc-based spatial cross-validation splitting strategies, the breakdown for the number of predictors used in the models, the 
impact of sampling bias mitigation techniques and the results for the first and the second fold. 

 
 

  CV splitting strategy Predictor count Sampling bias mitigation Fold number 

Group Predictor All Disc Random 3 4 7 None spThin Target-group 1 2 

  Shore distance 35 35 30 56 55 30 30 27 12 30 35 

  Bathymetry 39 42 34 65 62 34 34 33 8 34 37 

  SST (range) 19 15 21 19 24 21 21 18 18 21 11 

  Salinity 23 13 23 22 28 23 23 23 28 23 20 

  Calcite 4 9 3 3 3 3 3 3 2 3 3 

  pH 18 11 17 17 17 17 17 16 27 17 16 

Chlorophyll a group 

Chlorophyll a (mean) 14 15 18 12 12 18 18 15 22 18 19 

Chlorophyll a (min) 18 21 17 18 15 17 17 19 16 17 17 

Chlorophyll a (max) 9 16 16 3 4 16 16 17 19 16 14 

Chlorophyll a (range) 8 17 15 2 4 15 15 15 14 15 12 

Diffuse attenuation (mean) 25 18 26 24 24 26 26 26 28 26 27 

Diffuse attenuation (min) 24 24 24 25 21 24 24 25 19 24 24 

Diffuse attenuation (max) 19 18 20 6 8 20 20 21 25 20 22 

SST Group 

SST (mean) 80 59 78 85 84 78 78 80 85 78 76 

PAR (mean) 48 46 50 37 47 50 50 51 59 50 49 

PAR (max) 23 34 25 8 12 25 25 25 25 25 23 

Phosphate 28 32 26 28 27 26 26 27 28 26 30 

Nitrate 39 36 33 42 38 33 33 34 46 33 44 

Silicate 32 36 35 29 29 35 35 32 29 35 29 
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Table 3. Median percentage of species for which a predictor has a top 5 ranking for the different setup variations that have been calculated for all models and for 
some taxonomic groups. Within the class Chordata and within the kingdom Animalia taxonomic groups with few species were left out of this comparison. 

   
Chordata Other Animalia Plantae 

Group Predictor All Actinopterygii Annelida Arthropoda Cnidaria Echinodermata Mollusca Algae and seagrasses 

  Shore distance 35 42 16 11 66 32 29 44 

  Bathymetry 39 49 42 33 54 51 31 14 

  SST (range) 19 14 42 36 9 13 19 14 

  Salinity 23 18 16 19 11 21 25 31 

  Calcite 4 2 3 6 3 8 3 4 

  pH 18 19 6 11 11 13 21 18 

Chlorophyll 

a group 

Chlorophyll a (mean) 14 11 9 17 9 16 15 18 

Chlorophyll a (min) 18 15 16 19 9 16 15 20 

Chlorophyll a (max) 9 9 5 11 6 13 10 10 

Chlorophyll a (range) 8 8 3 8 6 11 10 8 

Diffuse attenuation (mean) 25 17 31 33 11 18 27 35 

Diffuse attenuation (min) 24 17 31 25 9 21 23 29 

Diffuse attenuation (max) 19 19 9 17 14 21 18 18 

SST Group 

SST (mean) 80 81 81 72 83 71 69 76 

PAR (mean) 48 52 41 42 57 45 47 33 

PAR (max) 23 18 28 33 9 21 24 18 

Phosphate 28 29 19 33 29 26 26 23 

Nitrate 39 43 22 36 47 34 35 24 

Silicate 32 25 41 36 14 29 35 39 
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Table 4. Median percentage of species for which a predictor has a top 5 ranking for the different setup variations that have been calculated for all 
models and traits. For the functional group trait, benthos includes all seafloor associated species, including demersal and reef-associated species; 
nekton includes all actively swimming pelagic species and plankton are all species unable to swim against a current. The neritic and oceanic zones 
were defined based on the ecoregion classification by Spalding (2007) whereby species having 5% or more of their distribution records outside of 
ecoregions are classified as oceanic. Species are a member of an ecoregion when at least 5% of its distribution records are situated in a polar, 
temperate or tropical ecoregion. Sampling bias was visually assessed from 1 (low bias) to 5 (high bias). 

 
 

  Functional group Zone Ecoregion Sampling bias 
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  Shore distance 35 39 24 13 38 17 13 25 49 29 28 42 35 28 

  Bathymetry 39 44 26 13 40 26 39 25 60 22 30 47 44 22 

  SST (range) 19 17 22 28 19 19 13 28 5 19 28 15 18 17 

  Salinity 23 20 24 22 22 18 26 27 14 31 28 17 17 28 

  Calcite 4 3 2 3 3 1 0 3 2 5 4 3 3 6 

  pH 18 17 17 6 19 7 4 18 14 26 22 13 13 14 

Chlorophyll a group 

Chlorophyll (mean) 14 12 16 19 13 17 17 17 10 14 14 13 13 17 

Chlorophyll (min) 18 16 19 17 17 17 13 20 11 20 20 14 15 22 

Chlorophyll (max) 9 8 11 9 9 10 4 10 8 12 9 8 10 11 

Chlorophyll (range) 8 8 8 9 8 10 4 8 8 10 8 7 8 11 

Diffuse attenuation (mean) 25 22 30 44 24 25 30 33 12 24 28 21 24 28 

Diffuse attenuation (min) 24 21 27 34 23 24 22 31 10 24 24 21 22 22 

Diffuse attenuation (max) 19 18 16 16 19 15 13 16 20 17 15 19 19 22 

SST Group 

SST (mean) 80 79 77 78 79 77 74 74 86 63 74 85 81 72 

PAR (mean) 48 49 45 34 48 44 26 42 56 42 46 53 46 42 

PAR (max) 23 21 29 19 22 19 17 25 14 25 26 19 20 22 

Phosphate 28 27 25 34 25 40 48 21 34 25 22 29 29 33 

Nitrate 39 39 33 31 36 49 57 27 49 30 28 41 43 28 

Silicate 32 28 39 41 28 43 52 38 16 37 36 23 31 33 
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Data access 
While distribution maps for all species can be consulted and all data is downloadable 

in an R Shiny interface (Chang et al., 2016) at <http://marinespeed.org>, we opted to 

also create the marinespeed R package allowing for an easy usage of the data (Table 

4). The first step, after installation from CRAN and loading the library, is to run the 

function ‘list_species’ which returns the scientific names and WoRMS identifiers for 

all species. Additional information on the taxonomy, sampling bias estimate and 

latitudinal zones can be viewed using the ‘species_info’ function. In order to run a 

function for all species either the ‘lapply_species’ or the ‘lapply_species_kfold’ 

function can be used. Alternatively, if you only need data for specific species, the 

‘get_occurrences’ and ‘get_fold_data’ methods can be used. On top of this other 

lower level functions for loading background data and creating cross-validation splits 

are also available. 

Table 4. Overview of the most important functions in the marinespeed R package. Lower level functions 
for accessing occurrences, background data and creating cross-validation folds are also available. 

Function Description 

list_species Get the list of scientific names and WoRMS identifiers for all 

species. 

species_info Additional species information. 

lapply_species Execute a function for all distribution records for multiple 

species. 

lapply_kfold_species Execute a function for one or more pre-made CV folds for 

multiple species. 

Discussion 
Species distribution modelling is widely used to identify areas that are ecologically 

suitable for the presence of species under past, current and future climates. Most 

studies concentrate, however, on terrestrial environments, while marine species 

distribution modelling kicked off comparatively late (Robinson et al., 2011). A direct 

consequence of the relative scarcity of marine SDM studies is that most of the 

methodological progress in SDM is biased towards terrestrial studies, despite marine 

environments being significantly different with respect to the ecological factors that 

control distributions and their spatio-temporal variation. These differences raise 

questions with respect to the environmental predictor relevance and the effects of 

model algorithms and settings on predictor relevance. By fitting presence-only SDMs 

for all combinations of predictors from different correlation groups, we assessed the 

http://marinespeed.org/
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predictor relevance and the variation therein for marine species distributions. To this 

end, we created a benchmark dataset (MarineSPEED) which bundles marine species 

distributions of 514 taxa and associated environmental variables. 

Relevant predictors 
SST (mean) is the most relevant predictor of global marine species distributions, 

regardless of model algorithms and parameter settings. This result confirms the 

importance of temperature for species distributions identified in the meta-analysis 

by Bradie & Leung (2016) and its importance for the distribution of birds (Barbet-

Massin & Jetz, 2014). Moreover the importance of SST as a predictor in marine 

ecology was previously confirmed for marine species richness (Tittensor et al., 2010) 

and biogeographic structure of marine benthic fauna (Belanger et al., 2012). While 

bathymetry and shore distance also appear to be very relevant, there is considerable 

variance in the results, which might be because they are distal environmental 

predictors (Austin, 2002). In contrast to previous results (Nyström Sandman et al., 

2013; Bradie & Leung, 2016) bathymetry was not the most important predictor, 

which can be explained by the global scale of our study. The importance of 

bathymetry has been shown to decrease with increased geographical scale (Nyström 

Sandman et al., 2013). Moreover the relevance of bathymetry is strongly linked to 

the species taxonomy (see Table 3 and 4 and Fig. S11-S14). At the other end of the 

spectrum, calcite is rarely selected as a meaningful predictor. The irrelevance of 

calcite is consistent with the fact that only one study in the meta-analysis by Bradie 

& Leung (2016) used calcite as a predictor. The remaining predictors are on average 

less part of the best scoring models, reflecting an overall reduced relevance toward 

predicting species distributions. 

Despite this general trend the variance in predictor relevance is relatively high across 

model algorithms and settings. 

The high variance when using different modelling algorithms is consistent with the 

results by Bucklin et al. (2015) who also demonstrated a significant interaction 

between predictor set and modelling algorithm. Especially predictor selection under 

GLM deviates from the other algorithms. Linear GLM-based models do not capture 

the relevance of SST (mean) very well. The lower relevance of SST in GLM models 

indicates that the global distribution of marine species is inadequately modelled by a 

linear relationship. Potentially, this effect can be mitigated by including polynomial 

features, an option which was not explored in the current analyses. In MaxEnt, with 

automatic selection of feature complexity and therefore yielding complex models, 

the relevance of SST (mean) is consistently high and displaying hardly any variation. 
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We expect that decreasing the complexity of the features fitted by MaxEnt will result 

in models more similar to GLM-based models. As for the other three algorithms, 

predictor selection seems to be largely consistent, echoing results of Barbet-Massin 

& Jetz (2014). 

We also compared the predictor relevance under two different evaluation measures, 

AUC and COR, respectively. Although AUC, as an absolute measure for model 

performance, has been criticized earlier (Lobo et al., 2010) its use is warranted here 

as we only compared relative AUC values and only modelled in a fixed geographical 

extent. Both AUC, which measures the ability to discern presences from background 

data, and COR, which provides a measure for the calibration of the model showed 

very similar predictor rankings. This similarity is indicative for the generalizability of 

the results across model evaluation metrics. 

Likewise, for most predictors the ranking method used did not affect the predictor 

relevance. The rank centrality method consistently gave a lower ranking to all 

predictors from the “Chlorophyll a group”. As ranking from pairwise comparisons is 

an active research field, a future study comparing the rank centrality algorithm with 

other recent ranking methods such as spectral ranking (Fogel et al., 2016), sync rank 

(Cucuringu, 2016) and Microsoft’s TrueSkill method (Herbrich et al., 2006) could lead 

to additional insights on the impact of the ranking algorithm on the predictor 

relevance. 

The impact of cross-validation strategies was assessed by using spatial disc-based 

and random sampling of training and testing sets. Using a spatial instead of a 

random data splitting strategy in combination with the removal of spatial sorting 

bias resulted in a lower relevance of SST (mean). This can be attributed to two 

different factors: (1) extrapolation and (2) scale effects. Firstly, the spatial data splits 

sometimes causes a restriction in the predictor space, which leads to extrapolation 

(Roberts et al., 2016). With SST being in general the most relevant, extrapolation 

outside of its range will lead to low evaluation scores and therefore a lower ranking. 

On the other hand, due to the pairwise selection of test pseudo-absences at a similar 

distance to the test points as the distance between the test points and their nearest 

training point, the mean distance to evaluation background points decreases causing 

a scale effect. These results confirm that SST is especially relevant on a global scale 

but less so on a smaller scale (Nyström Sandman et al., 2013). 

Restricting the number of predictors included in a model directly influences the 

relevance of the predictors. For most marine species the relevance of bathymetry 

and shore distance diminishes when more predictors are included in the model. 
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These predictors are only distally related to the suitability of an environment for 

species distributions and therefore the potential choice of more proximate 

predictors will result in their lower relevance in predictor-rich models. Inversely 

predictors from the “Chlorophyll a group” are selected more, suggesting that if 

combined with some of the predictors from the other correlation groups they 

provide a better explanation of the species distribution then bathymetry and shore 

distance do. 

Unlike the effect of spatial thinning, using a target-group background resulted in 

large differences in predictor relevance. As most of the species occurrence records 

are located along the coast, the target-group background, which is a subsample of it, 

is expected to have the same bias resulting in a lower relevance of shore distance 

and bathymetry. These results confirm the importance of background selection on 

SDMs (Chefaoui & Lobo 2008; Phillips et al. 2009; VanDerWal et al. 2009; Barbet-

Massin et al. 2012; Acevedo et al. 2012; Smith 2013; Senay et al. 2013). It is 

therefore recommended to investigate the impact of alternative pseudo-absence 

selection methods in future studies. Note that in general it is advised to create a 

species specific target-group with occurrence records from the same sampling 

campaign(s) and/or from similar species, reflecting the sampling bias of the species 

modelled (Phillips et al., 2009). 

In this study we explored the impact of several parameter settings on predictor 

selection, however the potential analyses are by no means exhaustive. For example 

the regularisation parameter and the complexity of the features in MaxEnt, the 

number of trees fitted in random forests and the usage of polynomial features in 

GLM were kept constant or were not explored. It is likely that applying species-

specific tuning of the algorithms will not only impact model performance but also 

affect the predictor selection (Anderson & Gonzalez, 2011; Merow et al., 2014). 

From a species perspective we noted that the taxonomy and the traits of a species 

have an influence on the relevance of predictors. The overarching pattern of 

predictor relevance holds up across traits, but some marked differences in predictor 

relevance were found for shore distance and bathymetry and to a lesser extent for 

diffuse attenuation, phosphate, nitrate and silicate. To some extent these 

differences are intuitive. For example, subdividing the taxa between oceanic and 

neritic species results in a higher relevance of shore distance for neritic species. 

Likewise, SST range is less relevant for tropical and polar species, because low and 

high latitudes typically exhibit very little annual sea surface temperature fluctuations 
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compared to mid-latitudes. Despite some pronounced differences across traits, 

trends for inorganic nutrients (nitrate, phosphate, silicate) are less easily explained. 

Benchmark dataset 
Inspired by the widespread use of benchmark datasets in machine learning and 

other computational fields we set out to create MarineSPEED. Although a series of 

papers was published using the same set of 226 terrestrial species (e.g. Elith et al. 

2006; Guisan et al. 2007; Phillips et al. 2009; Hijmans 2012) most studies discussing 

new methods related to SDM use a small set of different species. Moreover while 

the resulting algorithm and methods are regularly made available through ready to 

use R packages or desktop programs, the species distribution records used in these 

studies often are not. With the release of MarineSPEED and its associated R package 

researchers can download all occurrences, background records and cross-validation 

data sets. 

The marine character of the dataset is ideally suited for the study of methodological 

issues and parameterizations for distribution modelling of non-terrestrial species. 

This is necessary as the marine environment poses its own challenges for SDM 

(Kaschner et al., 2006; MacLeod et al., 2008; Dambach & Rödder, 2011; Robinson et 

al., 2011; Bentlage et al., 2013). Species distribution records from public databases 

contain a combination of opportunistic records and systematic sampling campaigns. 

They show large biases in amount and location of occurrences where the coastal 

areas are often more intensely sampled than offshore areas. The lower detectability 

of marine species in combination with the wide extent of the marine environment 

leads to false absences and a general lack of distribution records in comparison to 

the real world range extent of marine species. MacLeod et al. (2008) found that in 

contrast to the terrestrial environment, presence-absence methods don't perform 

better than presence-only methods in the marine environment. Although absences 

are rarely reported for marine species and not included in MarineSPEED, this study 

could be confirmed by using estimated absence data for species included in 

systematic surveys in OBIS (Coro et al. 2016). 

Applications 
Combining the marinespeed R package with one of the numerous SDM packages like 

BIOMOD2, dismo, sdm or zoon, other machine learning packages like caret, gbm, 

randomForest or xgboost and the general R ecosystem allows for numerous 

applications. 
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While several papers have compared the performance of SDM algorithms (e.g. Elith 

et al. 2006; Tsoar et al. 2007; Meynard & Quinn 2007; Liu et al. 2011; Lorena et al. 

2011), new SDM modelling algorithms are regularly released (e.g. MaxLike (Royle et 

al., 2012), Plateau (Brewer et al., 2016), GRaF (Golding & Purse, 2016)). Consistent 

usage of MarineSPEED to explore the performance of modelling algorithms would 

allow for a direct comparison of the strengths and weaknesses of them. On top of 

this, SDM algorithms benefit from species-specific parameter settings (Anderson & 

Gonzalez, 2011; Merow et al., 2013; Shcheglovitova & Anderson, 2013) but useful 

ranges for the different parameters are unknown for these newer modelling 

algorithms. 

Over the years, numerous studies have been published on methods for correcting 

sample selection bias (e.g. Dudík et al. 2005; Phillips et al. 2009; Boria et al. 2014; 

Varela et al. 2014; Barnes et al. 2014; Fernández & Nakamura 2015; Aiello-Lammens 

et al. 2015; Ranc et al. 2016) and selecting pseudo-absence records (e.g. Wisz & 

Guisan 2009; Lobo & Tognelli 2011; Barbet-Massin et al. 2012; Acevedo et al. 2012; 

Senay et al. 2013; Assis et al. 2015). Comparing these techniques with MarineSPEED 

can result in guidelines for sampling bias mitigation and pseudo-absence selection in 

the marine environment. 

Next to the availability of marine species with environmental data and traits we 

expect that the marinespeed R package, with its implementation of cross-validation 

methods, to be a useful tool for SDM. Installation instructions, data downloads and 

species information can be found at <http://marinespeed.org/>. 
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Supporting information 

Appendix S1 
List of OBIS and GBIF datasets used for compiling MarineSPEED. Available at: 

http://www.phycology.ugent.be/research/marinespeed/MS_AppendixS1.docx. 

Appendix S2 
List of species included in MarineSPEED with their taxonomy, sampling bias, 

ecoregions and SST statistics. Available at: 

http://www.phycology.ugent.be/research/marinespeed/MS_AppendixS2.xlsx. 

Appendix S3 

Setup 
Table S1. Overview of the different predictors used in the predictor selection analysis. The first column 
is the layer code used by the sdmpredictors R package to identify a predictor, the second column is the 
dataset the predictor was found in, the description column gives a short description of the predictor 
and the correlation groups column gives an indication of the correlation group a predictor belongs to. 

Layer code Dataset Description Correlation group 

BO_chlomax Bio-ORACLE Chlorophyll a (maximum) Chlorophyll a group 
BO_chlomean Bio-ORACLE Chlorophyll a (mean) Chlorophyll a group 
BO_chlomin Bio-ORACLE Chlorophyll a (minimum) Chlorophyll a group 
BO_chlorange Bio-ORACLE Chlorophyll a (range) Chlorophyll a group 
BO_damax Bio-ORACLE Diffuse attenuation coefficient at 490 

nm (maximum) 
Chlorophyll a group 

BO_damean Bio-ORACLE Diffuse attenuation coefficient at 490 
nm (mean) 

Chlorophyll a group 

BO_damin Bio-ORACLE Diffuse attenuation coefficient at 490 
nm (minimum) 

Chlorophyll a group 

BO_nitrate Bio-ORACLE Nitrate SST group 
BO_parmax Bio-ORACLE Photosynthetically available radiation 

(maximum) 
SST group 

BO_parmean Bio-ORACLE Photosynthetically available radiation 
(mean) 

SST group 

BO_phosphate Bio-ORACLE Phosphate SST group 
BO_silicate Bio-ORACLE Silicate SST group 
BO_sstmean Bio-ORACLE Sea surface temperature (mean) SST group 
BO_calcite Bio-ORACLE Calcite Calcite 
BO_ph Bio-ORACLE pH pH 
BO_salinity Bio-ORACLE Salinity Salinity 
BO_sstrange Bio-ORACLE Sea surface temperature (range) SST range 
MS_bathy_5m MARSPEC Bathymetry Bathymetry group 
MS_biogeo05_dist_ 
shore_5m 

MARSPEC Distance to the shoreline Shore distance 
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Table S2. Overview of all different setups for which models have been fitted for all combinations of 
predictors. Models for all species where build for all combinations of 3, 4 or 7 predictors using the 
random or disc-based splitting strategy to create the cross-validation (CV) data and the first or second 
fold from the 5-fold random cross-validation dataset. The last variation in setups is whether any and 
which sample selection bias correction method is used. For each predictor count we get a different 
total number of predictor combinations resulting in the calculation of a different number of models as 
models where fitted for all 514 species using 4 different SDM algorithms (bioclim, GLM, MaxEnt and 
random forests). 

Predictor 
count 

CV splitting 
strategy 

Fold 
number 

Sampling bias 
mitigation 

Number of 
combinations 

Number of 
models 

3 Random 1 None 467 960,152 

4 Random 1 None 905 1860,680 

7 Disc-based 1 None 265 544,840 

7 Random 1 None 265 544,840 

7 Random 2 None 265 544,840 

7 Random 1 spThin 265 544,840 

7 Random 1 Targetgroup 265 544,840 

Cross-validation splits 

 

Figure S1. Density plot for the distance, on a log scale, between each test point and the nearest training 
occurrence for all folds of the four cross-validation splitting strategies with the 5-fold disc-based 
strategy in orange, the 4-fold grid-based strategy in green, the 9-fold grid-based strategy in blue and 
the 5-fold random strategy in purple.  
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Figure S2. The cross-validation (CV) splits for the species Didemnum maculosum Milne Edwards using 
different methods: 5-fold random (A), 5-fold disc-based (B), 4-fold grid-based (C) and 9-fold grid-based 
(D). The different folds are numbered and coloured in the map (red=1, blue=2, brown=3, purple=4, 
green=5, grey=6, orange=7, yellow=8 and pink=9).  
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Figure S3. The cross-validation (CV) splits for the species Polycarpa aurata Quoy & Gaimard using 
different methods: 5-fold random (A), 5-fold disc-based (B), 4-fold grid-based (C) and 9-fold grid-based 
(D). The different folds are numbered and coloured in the map (red=1, blue=2, brown=3, purple=4, 
green=5, grey=6, orange=7, yellow=8 and pink=9).  
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Predictor relevance boxplots 

 
Figure S4. Percentage of species a predictor has a top 5 ranking in the different model setups for the 
different algorithms: bioclim (red), GLM (green), MaxEnt (blue) and random forests (purple). 

 
Figure S5. Percentage of species a predictor has a top 5 ranking in the different model setups for the 
two evaluation metrics: area under the receiver operating characteristic curve (AUC, red) and the point-
biserial correlation (COR, blue). 
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Figure S6. Percentage of species a predictor has a top 5 ranking in the different model setups for the 
three ranking methods: rank centrality (red), rank mean (green) and rank median (blue). 

 
Figure S7. Percentage of species a predictor has a top 5 ranking in the different model setups for the 
two cross-validation (CV) strategies: disc-based CV (red) and random CV (blue). Note that only results 
for model setups that were run for both CV strategies are shown here. 



92 | C h a p t e r  4  

 

 
Figure S8. Percentage of species a predictor has a top 5 ranking in the different model setups for the 
different number of predictor counts: 3 (red), 4 (green), 7 (blue). Note that only results for model 
setups that were run for all three predictor counts are shown here. 

 
Figure S9. Percentage of species a predictor has a top 5 ranking in the different model setups for the 
different sampling bias mitigation methods: nothing (red), spatial thinning (spThin, green) and 
targetgroup background (blue). Note that only results for model setups that were run for all sampling 
bias mitigation methods are shown here. 
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Figure S10. Percentage of species a predictor has a top 5 ranking in the different model setups for the 
two explored folds: 1 (red) and 2 (blue). Note that only results for model setups that were run for both 
folds are shown here. 
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Figure S11. Percentage of species a predictor has a top 5 ranking in the different model setups for a selection of common taxonomic groups: Actinopterygii (red), 

algae and seagrasses (brown), Annelida (green), Arthropoda (cyan), Cnidaria (blue), Echinodermata (purple) and Mollusca (pink). 
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Figure S12. Percentage of species a predictor has a top 5 ranking in the different model setups for the 
different functional groups: benthos (red), nekton (green) and plankton (blue). 

 

Figure S13. Percentage of species a predictor has a top 5 ranking in the different model setups for the 
different zones: neritic (red) and oceanic (blue). 



96 |  C h a p t e r  4

 

 

Figure S14. Percentage of species a predictor has a top 5 ranking in the different model setups for the 
different ecoregions: polar (red), temperate (green) and tropical (blue). 

 

Figure S15. Percentage of species a predictor has a top 5 ranking in the different model setups for the 
different levels of sampling bias: 1 (low bias, red), 2 (brown), 3 (green), 4 (blue) and 5 (high bias, 
purple). 

 


