52 research outputs found

    Using Pre-existing Microarray Datasets to Increase Experimental Power: Application to Insulin Resistance

    Get PDF
    Although they have become a widely used experimental technique for identifying differentially expressed (DE) genes, DNA microarrays are notorious for generating noisy data. A common strategy for mitigating the effects of noise is to perform many experimental replicates. This approach is often costly and sometimes impossible given limited resources; thus, analytical methods are needed which increase accuracy at no additional cost. One inexpensive source of microarray replicates comes from prior work: to date, data from hundreds of thousands of microarray experiments are in the public domain. Although these data assay a wide range of conditions, they cannot be used directly to inform any particular experiment and are thus ignored by most DE gene methods. We present the SVD Augmented Gene expression Analysis Tool (SAGAT), a mathematically principled, data-driven approach for identifying DE genes. SAGAT increases the power of a microarray experiment by using observed coexpression relationships from publicly available microarray datasets to reduce uncertainty in individual genes' expression measurements. We tested the method on three well-replicated human microarray datasets and demonstrate that use of SAGAT increased effective sample sizes by as many as 2.72 arrays. We applied SAGAT to unpublished data from a microarray study investigating transcriptional responses to insulin resistance, resulting in a 50% increase in the number of significant genes detected. We evaluated 11 (58%) of these genes experimentally using qPCR, confirming the directions of expression change for all 11 and statistical significance for three. Use of SAGAT revealed coherent biological changes in three pathways: inflammation, differentiation, and fatty acid synthesis, furthering our molecular understanding of a type 2 diabetes risk factor. We envision SAGAT as a means to maximize the potential for biological discovery from subtle transcriptional responses, and we provide it as a freely available software package that is immediately applicable to any human microarray study

    BHPR research: qualitative1. Complex reasoning determines patients' perception of outcome following foot surgery in rheumatoid arhtritis

    Get PDF
    Background: Foot surgery is common in patients with RA but research into surgical outcomes is limited and conceptually flawed as current outcome measures lack face validity: to date no one has asked patients what is important to them. This study aimed to determine which factors are important to patients when evaluating the success of foot surgery in RA Methods: Semi structured interviews of RA patients who had undergone foot surgery were conducted and transcribed verbatim. Thematic analysis of interviews was conducted to explore issues that were important to patients. Results: 11 RA patients (9 ♂, mean age 59, dis dur = 22yrs, mean of 3 yrs post op) with mixed experiences of foot surgery were interviewed. Patients interpreted outcome in respect to a multitude of factors, frequently positive change in one aspect contrasted with negative opinions about another. Overall, four major themes emerged. Function: Functional ability & participation in valued activities were very important to patients. Walking ability was a key concern but patients interpreted levels of activity in light of other aspects of their disease, reflecting on change in functional ability more than overall level. Positive feelings of improved mobility were often moderated by negative self perception ("I mean, I still walk like a waddling duck”). Appearance: Appearance was important to almost all patients but perhaps the most complex theme of all. Physical appearance, foot shape, and footwear were closely interlinked, yet patients saw these as distinct separate concepts. Patients need to legitimize these feelings was clear and they frequently entered into a defensive repertoire ("it's not cosmetic surgery; it's something that's more important than that, you know?”). Clinician opinion: Surgeons' post operative evaluation of the procedure was very influential. The impact of this appraisal continued to affect patients' lasting impression irrespective of how the outcome compared to their initial goals ("when he'd done it ... he said that hasn't worked as good as he'd wanted to ... but the pain has gone”). Pain: Whilst pain was important to almost all patients, it appeared to be less important than the other themes. Pain was predominately raised when it influenced other themes, such as function; many still felt the need to legitimize their foot pain in order for health professionals to take it seriously ("in the end I went to my GP because it had happened a few times and I went to an orthopaedic surgeon who was quite dismissive of it, it was like what are you complaining about”). Conclusions: Patients interpret the outcome of foot surgery using a multitude of interrelated factors, particularly functional ability, appearance and surgeons' appraisal of the procedure. While pain was often noted, this appeared less important than other factors in the overall outcome of the surgery. Future research into foot surgery should incorporate the complexity of how patients determine their outcome Disclosure statement: All authors have declared no conflicts of interes

    Genetic correlation between amyotrophic lateral sclerosis and schizophrenia

    Get PDF
    A. Palotie on työryhmän Schizophrenia Working Grp Psychiat jäsen.We have previously shown higher-than-expected rates of schizophrenia in relatives of patients with amyotrophic lateral sclerosis (ALS), suggesting an aetiological relationship between the diseases. Here, we investigate the genetic relationship between ALS and schizophrenia using genome-wide association study data from over 100,000 unique individuals. Using linkage disequilibrium score regression, we estimate the genetic correlation between ALS and schizophrenia to be 14.3% (7.05-21.6; P = 1 x 10(-4)) with schizophrenia polygenic risk scores explaining up to 0.12% of the variance in ALS (P = 8.4 x 10(-7)). A modest increase in comorbidity of ALS and schizophrenia is expected given these findings (odds ratio 1.08-1.26) but this would require very large studies to observe epidemiologically. We identify five potential novel ALS-associated loci using conditional false discovery rate analysis. It is likely that shared neurobiological mechanisms between these two disorders will engender novel hypotheses in future preclinical and clinical studies.Peer reviewe

    Analysis of shared heritability in common disorders of the brain

    Get PDF
    ience, this issue p. eaap8757 Structured Abstract INTRODUCTION Brain disorders may exhibit shared symptoms and substantial epidemiological comorbidity, inciting debate about their etiologic overlap. However, detailed study of phenotypes with different ages of onset, severity, and presentation poses a considerable challenge. Recently developed heritability methods allow us to accurately measure correlation of genome-wide common variant risk between two phenotypes from pools of different individuals and assess how connected they, or at least their genetic risks, are on the genomic level. We used genome-wide association data for 265,218 patients and 784,643 control participants, as well as 17 phenotypes from a total of 1,191,588 individuals, to quantify the degree of overlap for genetic risk factors of 25 common brain disorders. RATIONALE Over the past century, the classification of brain disorders has evolved to reflect the medical and scientific communities' assessments of the presumed root causes of clinical phenomena such as behavioral change, loss of motor function, or alterations of consciousness. Directly observable phenomena (such as the presence of emboli, protein tangles, or unusual electrical activity patterns) generally define and separate neurological disorders from psychiatric disorders. Understanding the genetic underpinnings and categorical distinctions for brain disorders and related phenotypes may inform the search for their biological mechanisms. RESULTS Common variant risk for psychiatric disorders was shown to correlate significantly, especially among attention deficit hyperactivity disorder (ADHD), bipolar disorder, major depressive disorder (MDD), and schizophrenia. By contrast, neurological disorders appear more distinct from one another and from the psychiatric disorders, except for migraine, which was significantly correlated to ADHD, MDD, and Tourette syndrome. We demonstrate that, in the general population, the personality trait neuroticism is significantly correlated with almost every psychiatric disorder and migraine. We also identify significant genetic sharing between disorders and early life cognitive measures (e.g., years of education and college attainment) in the general population, demonstrating positive correlation with several psychiatric disorders (e.g., anorexia nervosa and bipolar disorder) and negative correlation with several neurological phenotypes (e.g., Alzheimer's disease and ischemic stroke), even though the latter are considered to result from specific processes that occur later in life. Extensive simulations were also performed to inform how statistical power, diagnostic misclassification, and phenotypic heterogeneity influence genetic correlations. CONCLUSION The high degree of genetic correlation among many of the psychiatric disorders adds further evidence that their current clinical boundaries do not reflect distinct underlying pathogenic processes, at least on the genetic level. This suggests a deeply interconnected nature for psychiatric disorders, in contrast to neurological disorders, and underscores the need to refine psychiatric diagnostics. Genetically informed analyses may provide important "scaffolding" to support such restructuring of psychiatric nosology, which likely requires incorporating many levels of information. By contrast, we find limited evidence for widespread common genetic risk sharing among neurological disorders or across neurological and psychiatric disorders. We show that both psychiatric and neurological disorders have robust correlations with cognitive and personality measures. Further study is needed to evaluate whether overlapping genetic contributions to psychiatric pathology may influence treatment choices. Ultimately, such developments may pave the way toward reduced heterogeneity and improved diagnosis and treatment of psychiatric disorders

    Relationship to insulin resistance of the Adult Treatment Panel III diagnostic criteria for identification of the metabolic syndrome

    No full text
    The Adult Treatment Panel III (ATP III) has published criteria for diagnosing the metabolic syndrome, a cluster of closely related abnormalities related to insulin resistance that increase cardiovascular disease risk. The present analysis was performed to evaluate the ability of these criteria to identify insulin- -resistant individuals. The population consisted of 443 healthy volunteers, with measurements of BMI, blood pressure, fasting plasma glucose, triglycerides, HDL cholesterol concentrations, and steady-state plasma glucose (SSPG) concentration. Insulin resistance was defined as being in the top tertile of SSPG concentrations. Of the population, 20% satisfied ATP III criteria for the metabolic syndrome. Although insulin resistance and the presence of the metabolic syndrome were significantly associated (P < 0.001), the sensitivity and positive predictive value equaled 46% (69 of 149) and 76% (69 of 91), respectively. Being overweight, with high triglycerides, low HDL cholesterol, or elevated blood pressure, most often resulted in a diagnosis of the metabolic syndrome. Thus, the ATP III criteria do not provide a sensitive approach to identifying insulin-resistant individuals. The individual components vary both in terms of their utility in making a diagnosis of the metabolic syndrome and their relationship to insulin resistance, with the obesity and lipid criteria being most useful

    Critical role for GLP-1 in symptomatic post-bariatric hypoglycaemia

    No full text
    AIMS/HYPOTHESIS: Post-bariatric hypoglycaemia (PBH) is a rare, but severe, metabolic disorder arising months to years after bariatric surgery. It is characterised by symptomatic postprandial hypoglycaemia, with inappropriately elevated insulin concentrations. The relative contribution of exaggerated incretin hormone signalling to dysregulated insulin secretion and symptomatic hypoglycaemia is a subject of ongoing inquiry. This study was designed to test the hypothesis that PBH and associated symptoms are primarily mediated by glucagon-like peptide-1 (GLP-1). METHODS: We conducted a double-blinded crossover study wherein eight participants with confirmed PBH were assigned in random order to intravenous infusion of the GLP-1 receptor (GLP-1r) antagonist, exendin (9-39) (Ex-9), or placebo during an OGTT on two separate days at the Stanford University Clinical and Translational Research Unit. Metabolic, symptomatic and pharmacokinetic variables were evaluated. Results were compared with a cohort of BMI- and glucose-matched non-surgical controls (NSCs). RESULTS: Infusion of Ex-9 decreased the time to peak glucose and rate of glucose decline during OGTT, and raised the postprandial nadir by over 70%, normalising it relative to NSCs and preventing hypoglycaemia in all PBH participants. Insulin AUC and secretion rate decreased by 57% and 71% respectively, and peak postprandial insulin was normalised relative to NSCs. Autonomic and neuroglycopenic symptoms were significantly reduced during Ex-9 infusion. CONCLUSIONS/INTERPRETATION: GLP-1r blockade prevented hypoglycaemia in 100% of individuals, normalised beta cell function and reversed neuroglycopenic symptoms, supporting the conclusion that GLP-1 plays a primary role in mediating hyperinsulinaemic hypoglycaemia in PBH. Competitive antagonism at the GLP-1r merits consideration as a therapeutic strategy

    A glucocorticoid- and diet-responsive pathway toggles adipocyte precursor cell activity in vivo

    No full text
    Obesity is driven by excess caloric intake, which leads to the expansion of adipose tissue by hypertrophy and hyperplasia. Adipose tissue hyperplasia results from the differentiation of adipocyte precursor cells (APCs) that reside in adipose depots. Investigation into this process has elucidated a network of mostly transcription factors that drive APCs through the differentiation process. Using in vitro and in vivo approaches, our study revealed a signaling pathway that inhibited the initiation of the adipocyte differentiation program. Mouse adipocytes secreted the extracellular protease ADAMTS1, which triggered the production of the cytokine pleiotrophin (PTN) through the Wnt/β-catenin pathway, and promoted proliferation rather than differentiation of APCs. Glucocorticoid exposure in vitro or in vivo reduced ADAMTS1 abundance in adipocytes. In addition, mice fed a high-fat diet showed decreased Adamts1 expression in the visceral perigonadal adipose depot, which expanded by adipogenesis in response to the diet, and increased Adamts1 expression in the subcutaneous inguinal adipose depot, which did not induce adipogenesis. Similar to what occurred in mouse subcutaneous adipose tissue, diet-induced weight gain increased the expression of ADAMTS1, PTN, and certain Wnt target genes in the subcutaneous adipose depot of human volunteers, suggesting the relevance of this pathway to physiological adipose tissue homeostasis and the pathogenesis of obesity. Thus, this pathway functions as a toggle on APCs, regulating a decision between differentiation and proliferation and coordinating the response of adipose tissue to systemic cues

    Adipose tissue macrophages impair preadipocyte differentiation in humans

    No full text
    <div><p>Aim</p><p>The physiologic mechanisms underlying the relationship between obesity and insulin resistance are not fully understood. Impaired adipocyte differentiation and localized inflammation characterize adipose tissue from obese, insulin-resistant humans. The directionality of this relationship is not known, however. The aim of the current study was to investigate whether adipose tissue inflammation is causally-related to impaired adipocyte differentiation.</p><p>Methods</p><p>Abdominal subcutaneous(SAT) and visceral(VAT) adipose tissue was obtained from 20 human participants undergoing bariatric surgery. Preadipocytes were isolated, and cultured in the presence or absence of CD14+ macrophages obtained from the same adipose tissue sample. Adipocyte differentiation was quantified after 14 days via immunofluorescence, Oil-Red O, and adipogenic gene expression. Cytokine secretion by mature adipocytes cultured with or without CD14+macrophages was quantified.</p><p>Results</p><p>Adipocyte differentiation was significantly lower in VAT than SAT by all measures (p<0.001). With macrophage removal, SAT preadipocyte differentiation increased significantly as measured by immunofluorescence and gene expression, whereas VAT preadipocyte differentiation was unchanged. Adipocyte-secreted proinflammatory cytokines were higher and adiponectin lower in media from VAT vs SAT: macrophage removal reduced inflammatory cytokine and increased adiponectin secretion from both SAT and VAT adipocytes. Differentiation of preadipocytes from SAT but not VAT correlated inversely with systemic insulin resistance.</p><p>Conclusions</p><p>The current results reveal that proinflammatory immune cells in human SAT are causally-related to impaired preadipocyte differentiation, which in turn is associated with systemic insulin resistance. In VAT, preadipocyte differentiation is poor even in the absence of tissue macrophages, pointing to inherent differences in fat storage potential between the two depots.</p></div
    corecore