79 research outputs found

    The Effect of Pulling Out Cochlear Implant Electrodes on Inner Ear Microstructures: A Temporal Bone Study

    Get PDF
    The exchange of an cochlear implant or the re-positioning of an electrode have become more frequently required than a decade ago. The consequences of such procedures at a microstructural level within the cochlea are not known. It was the aim of the present study to further investigate the effects of an CI electrode pull-out. Therefore 10 freshly harvested temporal bones (TB) were histologically evaluated after a cochlear implant electrode pull-out of a perimodiolar electrode. In additional 9 TB the intrascalar movements of the CI electrode while being pulled-out were digitally analysed by video- capturing. Histologically, a disruption of the modiolar wall or the spiral osseous lamina were not observed. In one TB, a basilar membrane lifting up was found, but it could not be undoubtedly attributed to the pull-out of the electrode. When analyzing the temporal sequence of the electrode movement during the pull-out, the electrode turned in one case so that the tip elevates the basilar membrane. The pull- out of perimodiolarly placed CI electrodes does not damage the modiolar wall at a microstructural level and should be guided (e.g., forceps) to prevent a 90 o turning of the electrode tip into the direction of the basilar membrane

    Initiation of electric discharge. Method of covering the electrode

    Get PDF
    A report of our experiences involving the treatment six male patients with a new method of closing perforations in the pharynx and upper esophagus, following surgery of the cervical spine region. Perforation of the pharynx and upper esophagus are rare complications following cervical spine surgery. The grave consequences of these complications necessitate in most cases immediate surgical therapy. In most cases, the first step involves the removal of the cervical plate and screws. The defect was then closed using a vascular pedicled musculofascia flap derived from the infrahyoid musculature. In all cases, the flap healed into place without complications. The patients began taking oral nutrients after an average of seven postoperative (5–12) days. In none of the cases did functional disorders or complications arise during the follow-up period (1–5 years). The infrahyoid muscle flap is well suited for reconstruction of the posterior pharyngeal wall and the upper esophagus

    Advances to Electrode Pullback in Cochlear Implant Surgery

    Get PDF
    Objective. To observe the intracochlear behavior of a cochlear implant electrode insertion technique (called "pullback") in temporal bones. Study Design. Experimental. Settings. Tertiary referral center. Method. The change of the intracochlear electrode position was investigated under various conditions of an electrode pullback (N = 54) in 9 radiologically, size-estimated temporal bones (TBs). Those TBs were prepared by removal of the cochlear scalar roof to apply digital video capture procedures to monitor the pullback procedures. The digitally captured pictures were analyzed with specific software. Results. An optimal pullback of the electrode varied between 1.37 mm and 2.67 mm. While a limited pullback is without risk, an extended pullback bears the risk of removing the electrode tip out of its initial position or out of the cochlea. A correlation between cochlear size and the amount of pullback was not found. Conclusion. An initial insertion to the first or the second marker on the electrode followed by a limited pullback of about 1.37 mm to 1.5 mm can be recommended to achieve an optimized perimodiolar position. A pullback of up to two marker positions bears the risk of removing the electrode tip out of its initial position

    A new device for the removal of cochlear schwannoma: A temporal bone study

    Get PDF
    BackgroundIntralabyrinthine schwannoma (ILS) is a rare, mostly unilateral disease that causes deafness. Different intralabyrinthine sites of ILS can occur and can be removed by different surgical approaches. Cochlear ILSs are frequently partially hidden by the modiolus and therefore difficult to extirpate. Surgical techniques can be traumatic, offer limited surgical control during removal, and are time-consuming. The aim of this present study was to demonstrate the performance and handling of a newly developed device for the removal of cochlear intralabyrinthine schwannoma in the temporal bone.MethodsIn a temporal bone study with a prepared posterior tympanotomy, an enlarged round window approach, and additional second turn access, a stiffened device with silicone rings was inserted and extracted gradually from the second turn access until the rings were visible in the second turn access.ResultsInsertion and extraction of the second cochlear access were easily performed. Pulling and pushing the silicone rings through the modiolus and hidden parts of the basal turn was possible and worked like a pipe cleaner.ConclusionThis newly developed tissue removal device in combination with the proposed surgical handling offers a new and less traumatic way to remove cochlear ILS

    In-depth analysis of T cell immunity and antibody responses in heterologous prime-boost-boost vaccine regimens against SARS-CoV-2 and Omicron variant.

    Get PDF
    With the emergence of novel Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) Variants of Concern (VOCs), vaccination studies that elucidate the efficiency and effectiveness of a vaccination campaign are critical to assess the durability and the protective immunity provided by vaccines. SARS-CoV-2 vaccines have been found to induce robust humoral and cell-mediated immunity in individuals vaccinated with homologous vaccination regimens. Recent studies also suggest improved immune response against SARS-CoV-2 when heterologous vaccination strategies are employed. Yet, few data exist on the extent to which heterologous prime-boost-boost vaccinations with two different vaccine platforms have an impact on the T cell-mediated immune responses with a special emphasis on the currently dominantly circulating Omicron strain. In this study, we collected serum and peripheral blood mononuclear cells (PBMCs) from 57 study participants of median 35-year old's working in the health care field, who have received different vaccination regimens. Neutralization assays revealed robust but decreased neutralization of Omicron VOC, including BA.1 and BA.4/5, compared to WT SARS-CoV-2 in all vaccine groups and increased WT SARS-CoV-2 binding and neutralizing antibodies titers in homologous mRNA prime-boost-boost study participants. By investigating cytokine production, we found that homologous and heterologous prime-boost-boost-vaccination induces a robust cytokine response of CD4+ and CD8+ T cells. Collectively, our results indicate robust humoral and T cell mediated immunity against Omicron in homologous and heterologous prime-boost-boost vaccinated study participants, which might serve as a guide for policy decisions

    Minimal Reporting Standards for Active Middle Ear Hearing Implants.

    Get PDF
    There is currently no standardized method for reporting audiological, surgical and subjective outcome measures in clinical trials with active middle ear implants (AMEIs). It is often difficult to compare studies due to data incompatibility and to perform meta-analyses across different centres is almost impossible. A committee of ENT and audiological experts from Germany, Austria and Switzerland decided to address this issue by developing new minimal standards for reporting the outcomes of AMEI clinical trials. The consensus presented here aims to provide a recommendation to enable better inter-study comparability

    Insights into mantle composition and mantle melting beneath mid-ocean ridges from postspreading volcanism on the fossil Galapagos Rise

    Get PDF
    New major and trace element and Sr, Nd, and Pb isotope data, together with 39Ar-40Ar ages for lavas from the extinct Galapagos Rise spreading center in the eastern Pacific reveal the evolution in magma compositions erupted during slowdown and after the end of active spreading at a mid-ocean ridge. Lavas erupted at 9.2 Ma, immediately prior to the end of spreading are incompatible element depleted mid-ocean ridge tholeiitic basalts, whereas progressively younger (7.5 to 5.7 Ma) postspreading lavas are increasingly alkalic, have higher concentrations of incompatible elements, higher La/Yb, K/Ti, 87Sr/86Sr, and lower 143Nd/144Nd ratios and were produced by smaller degrees of mantle melting. The large, correlated variations in trace element and isotope compositions can only be explained by melting of heterogenous mantle, in which incompatible trace element enriched lithologies preferentially contribute to smaller degree mantle melts. The effects of variable degrees of melting of heterogeneous mantle on lava compositions must be taken into account when using mid-ocean ridge basalt (MORB) to infer the conditions of melting beneath active spreading ridges. For example, the stronger “garnet signature” inferred from Sm/Nd and 143Nd/144Nd ratios for postspreading lavas from the Galapagos Rise results from a larger contribution from enriched lithologies with high La/Yb and Sm/Yb, rather than from a greater proportion of melting in the stability field of garnet peridotite. Correlations between ridge depth and Sm/Yb and fractionation-corrected Na concentrations in MORB worldwide could result from variations in mantle fertility and/or variations in the average degree of melting, rather than from large variations in mantle temperature. If more fertile mantle lithologies are preferentially melted beneath active spreading ridges, then the upper mantle may be significantly more “depleted” than is generally inferred from the compositions of MORB

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements
    corecore