1,049 research outputs found

    Phylogenetic analysis of Cryptosporidium isolates from captive reptiles using 18S rDNA sequence data and random amplified polymorphic DNA analys

    Get PDF
    Sequence alignment of a polymerase chain reaction-amplified 713-base pair region of the Cryptosporidium 18S rDNA gene was carried out on 15 captive reptile isolates from different geographic locations and compared to both Cryptosporidium parvum and Cryptosporidium muris isolates. Random amplified polymorphic DNA (RAPD) analysis was also performed on a smaller number of these samples. The data generated by both techniques were significantly correlated (P < 0.002), providing additional evidence to support the clonal population structure hypothesis for Cryptosporidium. Phylogenetic analysis of both 18S sequence information and RAPD analysis grouped the majority of reptile isolates together into 1 main group attributed to Cryptosporidium serpentis, which was genetically distinct but closely related to C. muris. A second genotype exhibited by 1 reptile isolate (S6) appeared to be intermediate between C. serpentis and C. muris but grouped most closely with C. muris, as it exhibited 99.15% similarity with C. muris and only 97.13% similarity with C. serpentis. The third genotype identified in 2 reptile isolates was a previously characterized 'mouse' genotype that grouped closely with bovine and human C. parvum isolates

    Single Channel Wireless EEG: Proposed Application in Train Drivers

    Full text link
    Electroencephalography (EEG) can be used as an indicator of fatigue. Several studies have shown that slow wave brain activities, delta (0-4 Hz) and theta (4- 8 Hz), increase as an individual becomes fatigued, while the fast brain activities, alpha (8-13 Hz) and beta (13-35 Hz), decrease. However, an EEG is a complex piece of equipment that is generally used in laboratory based studies. In order to develop a fatigue countermeasure device for train drivers using EEG, there is a need for a simple and wireless EEG monitor. This paper explains the development of a single channel wireless EEG device

    Thermodynamics of alpha- and beta-structure formation in proteins

    Full text link
    An atomic protein model with a minimalistic potential is developed and then tested on an alpha-helix and a beta-hairpin, using exactly the same parameters for both peptides. We find that melting curves for these sequences to a good approximation can be described by a simple two-state model, with parameters that are in reasonable quantitative agreement with experimental data. Despite the apparent two-state character of the melting curves, the energy distributions are found to lack a clear bimodal shape, which is discussed in some detail. We also perform a Monte Carlo-based kinetic study and find, in accord with experimental data, that the alpha-helix forms faster than the beta-hairpin.Comment: 18 pages, 4 figure

    A Comparison Of New Calculations Of The Yearly 10Be Production In The Earths Polar Atmosphere By Cosmic Rays With Yearly 10Be Measurements In Multiple Greenland Ice Cores Between 1939 And 1994 - A Troubling Lack Of Concordance Paper #2

    Full text link
    We have compared the yearly production rates of 10Be by cosmic rays in the Earths polar atmosphere over the last 50-70 years with 10Be measurements from two separate ice cores in Greenland. These ice cores provide measurements of the annual 10Be concentration and 10Be flux levels during this time. The scatter in the ice core yearly data vs. the production data is larger than the average solar 11 year production variations that are being measured. The cross correlation coefficients between the yearly 10Be production and the ice core 10Be measurements for this time period are <0.4 in all comparisons between ice core data and 10Be production, including 10Be concentrations, 10Be fluxes and in comparing the two separate ice core measurements. In fact, the cross correlation between the two ice core measurements, which should be measuring the same source, is the lowest of all, only ~0.2. These values for the correlation coefficient are all indicative of a "poor" correlation. The regression line slopes for the best fit lines between the 10Be production and the 10Be measurements used in the cross correlation analysis are all in the range 0.4-0.6. This is a particular problem for historical projections of solar activity based on ice core measurements which assume a 1:1 correspondence. We have made other tests of the correspondence between the 10Be predictions and the ice core measurements which lead to the same conclusion, namely that other influences on the ice core measurements, as large as or larger than the production changes themselves, are occurring. These influences could be climatic or instrumentally based. We suggest new ice core measurements that might help in defining more clearly what these influences are and-if possible-to correct for them.Comment: 24 pages, 6 figure

    Molecular and phylogenetic analysis of Cryptosporidium muris from various hosts

    Get PDF
    Isolates of Cryptosporidium muris and C. serpentis were characterized from different hosts using nucleotide sequence analysis of the rDNA 18S and ITS1 regions, and the heat-shock (HSP-70) gene. Phylogenetic analysis confirmed preliminary evidence that C. muris is not a uniform species. Two distinct genotypes were identified within C. muris; (1) C. muris genotype A; comprising bovine and camel isolates of C. muris from different geographical locations, and (2) C. muris genotype B comprising C. muris isolates from mice, a hamster, a rock hyrax and a camel from the same enclosure. These 2 genotypes may represent separate species but further biological and molecular studies are required for confirmation

    Association of the 5-aminoimidazole-4-carboxamide ribonucleotide transformylase gene with response to methotrexate in juvenile idiopathic arthritis

    Get PDF
    OBJECTIVES: Methotrexate (MTX) is the mainstay treatment for juvenile idiopathic arthritis (JIA), however approximately 30% of children will fail to respond to the drug. Identification of genetic predictors of response to MTX would be invaluable in developing optimal treatment strategies for JIA. Using a candidate gene approach, single nucleotide polymorphisms (SNPs) within genes in the metabolic pathway of MTX, were investigated for association with response to treatment in JIA cases. METHODS: Tagging SNPs were selected across 13 MTX metabolic pathway genes and were genotyped using Sequenom genotyping technology in subjects recruited from the Sparks Childhood Arthritis Response to Medication Study. Response to MTX was defined using the American College of Rheumatology (ACR) paediatric response criteria and SNP genotype frequencies were compared between the worst and best responders (ACR-Ped70) to MTX. An independent cohort of US JIA cases was available for validation of initial findings. RESULTS: One SNP within the inosine triphosphate pyrophosphatase gene (ITPA) and two SNPs within 5-aminoimidazole-4-carboxamide ribonucleotide transformylase gene (ATIC) were significantly associated with a poor response to MTX. One of the ATIC SNPs showed a trend towards association with MTX response in an independent cohort of US JIA cases. Meta-analysis of the two studies strengthened this association (combined p value=0.002). CONCLUSIONS: This study presents association of a SNP in the ATIC gene with response to MTX in JIA. There is now growing evidence to support a role of the ATIC gene with response to MTX treatment. These results could contribute towards a better understanding of and ability to predict MTX response in JIA

    Twin Imperial Disasters. The invasions of Khiva and Afghanistan in the Russian and British official mind, 1839–1842

    Get PDF
    This paper examines two linked cases of abortive Imperial expansion. The British invasion of Afghanistan and the Russian winter expedition to Khiva both took place in 1839, and both ended in disaster. These events were linked, not merely by coincidence, but by mutual reactions to intelligence received in Orenburg, St Petersburg, Calcutta, London, and Tehran. British and Russian officials shared similar fears about each other's ambitions in Central Asia, similar patterns of prejudice, arrogance and ignorance, and a similar sense of entitlement as the self-conscious agents of two ‘Great Powers’. By examining the decision-making process which preceded these twin cases of expansion, and the British and Russian attitudes to Central Asian rulers and informants, the paper provides not only a deeper understanding of what provoked these particular disasters, but also of the wider process of European imperial expansion in the early nineteenth century

    Sapphirine granulites from Panasapattu, Eastern Ghats belt, India : Ultrahigh-temperature metamorphism in a Proterozoic convergent plate margin

    Get PDF
    AbstractWe report equilibrium sapphirine + quartz assemblage in biotite–orthopyroxene–garnet granulites from a new locality in Panasapattu of Paderu region in the Eastern Ghats granulite belt, which provide new evidence for ultrahigh-temperature (UHT) metamorphism at 1030–1050 °C and 10 kbar in this region. The development of migmatitic texture, stabilization of the garnet–orthopyroxene–plagioclase–K-feldspar association, prograde biotite inclusions within garnet and sapphirine as well as sapphirine and cordierite inclusions within garnet in these granulites indicate that the observed peak assemblages probably formed during prograde dehydration melting of a Bt–Sill–Qtz assemblage, and constrain the prograde stage of the p–T path. The core domains of orthopyroxene porphyroblasts have up to w(Al2O3) 9.6%, which suggest that the temperatures reached up to 1150 °C suggesting extreme crustal metamorphism. These conditions were also confirmed by the garnet–orthopyroxene thermobarometery, which yields a p–T range of 1012–960 °C and 9.4 kbar. The p–T phase topologies computed using isochemical sections calculated in the model system Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O (NCKFMASH) for metapelites, garnet-free sapphirine granulites and garnet-bearing sapphirine granulites match the melt-bearing assemblages observed in these rocks. Isochemical sections constructed in the NCKFMASH system for an average sub-aluminous metapelite bulk composition, and contoured for modal proportions of melt and garnet, as well as for the compositional isopleths of garnet, predict phase and reaction relations that are consistent with those observed in the rocks. Garnet and orthopyroxene contain Ti-rich phlogopite inclusions, suggesting formation by prograde melting reactions at the expense of phlogopite during ultrahigh-temperature conditions. These p–T results underestimate 'peak' conditions, in part as a result of the modification of garnet compositions in the domains where some melt was retained. The post-peak evolution is constrained by a succession of melt-present reactions that occur at p < 10 kbar, inferred from micro-structural relations among various minerals. After high-temperature decompression from the metamorphic peak, the p–T path followed a near isobaric cooling stage to T < 900 °C. The UHT rocks investigated in this study occur within a continental collision suture which witnessed prolonged subduction–accretion history prior to the final collision. We correlate the extreme metamorphism and the stabilization of UHT mineral assemblages to heat and volatile input from an upwelled asthenosphere during subduction–collision tectonics in a Proterozoic convergent plate margin

    Multidimensional Atomic Force Microscopy: A Versatile Novel Technology for Nanopharmacology Research

    Get PDF
    Nanotechnology is giving us a glimpse into a nascent field of nanopharmacology that deals with pharmacological phenomena at molecular scale. This review presents our perspective on the use of scanning probe microscopy techniques with special emphasis to multidimensional atomic force microscopy (m-AFM) to explore this new field with a particular emphasis to define targets, design therapeutics, and track outcomes of molecular-scale pharmacological interactions. The approach will be to first discuss operating principles of m-AFM and provide representative examples of studies to understand human health and disease at the molecular level and then to address different strategies in defining target macromolecules, screening potential drug candidates, developing and characterizing of drug delivery systems, and monitoring target–drug interactions. Finally, we will discuss some future directions including AFM tip-based parallel sensors integrated with other high-throughput technologies which could be a powerful platform for drug discovery
    corecore