48 research outputs found

    Towards the design of 3D multiscale instructive tissue engineering constructs: Current approaches and trends

    Get PDF
    The design of 3D constructs with adequate properties to instruct and guide cells both in vitro and in vivo is one of the major focuses of tissue engineering. Successful tissue regeneration depends on the favorable crosstalk between the supporting structure, the cells and the host tissue so that a balanced matrix production and degradation is achieved. Herein, the major occurring events and players in normal and regenerative tissue are overviewed. These have been inspiring the selection or synthesis of instructive cues to include into the 3D constructs. We further highlight the importance of a multiscale perception of the range of features that can be included on the biomimetic structures. Lastly, we focus on the current and developing tissue-engineering approaches for the preparation of such 3D constructs: top-down, bottom-up and integrative. Bottom-up and integrative approaches present a higher potential for the design of tissue engineering devices with multiscale features and higher biochemichal control than top-down strategies, and are the main focus of this review.The research leading to these results has received funding from the European Research Council grant agreement ERC-2012-ADG-20120216-321266 for the project ComplexiTE. Portuguese Foundation for Science and Technology is gratefully acknowledged for the fellowship of Sara M. Oliveira (SFRH/BD/70107/2010)

    3D bioactive composite scaffolds for bone tissue engineering

    Get PDF
    Bone is the second most commonly transplanted tissue worldwide, with over four million operations using bone grafts or bone substitute materials annually to treat bone defects. However, significant limitations affect current treatment options and clinical demand for bone grafts continues to rise due to conditions such as trauma, cancer, infection and arthritis. Developing bioactive three-dimensional (3D) scaffolds to support bone regeneration has therefore become a key area of focus within bone tissue engineering (BTE). A variety of materials and manufacturing methods including 3D printing have been used to create novel alternatives to traditional bone grafts. However, individual groups of materials including polymers, ceramics and hydrogels have been unable to fully replicate the properties of bone when used alone. Favourable material properties can be combined and bioactivity improved when groups of materials are used together in composite 3D scaffolds. This review will therefore consider the ideal properties of bioactive composite 3D scaffolds and examine recent use of polymers, hydrogels, metals, ceramics and bio-glasses in BTE. Scaffold fabrication methodology, mechanical performance, biocompatibility, bioactivity, and potential clinical translations will be discussed

    Rapid fabrication of cell-laden alginate hydrogel 3D structures by micro dip-coating

    Get PDF
    Development of a simple, straight-forward 3D fabrication method to culture cells in 3D, without relying on any complex fabrication methods, remains a challenge. In this paper, we describe a new technique that allows fabrication of scalable 3D cell-laden hydrogel structures easily, without complex machinery: the technique can be done using only apparatus already available in a typical cell biology laboratory. The fabrication method involves micro dip-coating of cell-laden hydrogels covering the surface of a metal bar, into the cross-linking reagents calcium chloride or barium chloride to form hollow tubular structures. This method can be used to form single layers with thickness ranging from 126 μm to 220 μm or multi-layered tubular structures. This fabrication method uses alginate hydrogel as the primary biomaterial and a secondary biomaterial can be added depending on the desired application. We demonstrate the feasibility of this method, with survival rate over 75% immediately after fabrication and normal responsiveness of cells within these tubular structures using mouse dermal embryonic fibroblast cells and human embryonic kidney 293 cells containing a tetracycline-responsive, red fluorescent protein (tHEK cells)

    Composite porous scaffold of PEG/PLA support improved bone matrix deposition in vitro compared to PLA‐only scaffolds

    Get PDF
    Controllable pore size and architecture are essential properties for tissue-engineering scaffolds to support cell ingrowth colonization. To investigate the effect of PEG addition on porosity and bone-cell behavior, porous Polylactic acid (PLA)-Polyethylene glycol (PEG) scaffolds were developed with varied weight ratios of PLA-PEG (100/0, 90/10, 75/25) using solvent casting and porogen leaching. Sugar 200-300 µm in size was used as a porogen. To assess their suitability for bone tissue engineering, MLO-A5 murine osteoblast cells were cultured and cell metabolic activity, alkaline phosphatase (ALP) activity and bone-matrix production determined (alizarin red S staining for calcium, direct red 80 staining for collagen). It was found that metabolic activity was significantly higher over time on scaffolds containing PEG, ALP activity and mineralized matrix production were also significantly higher on scaffolds containing 25% PEG. Porous architecture and cell distribution and penetration into the scaffold were analyzed using SEM and confocal microscopy, revealing that inclusion of PEG increased pore interconnectivity and therefore cell ingrowth in comparison to pure PLA scaffolds. The results of this study confirmed that PLA-PEG porous scaffolds support mineralizing osteoblasts better than pure PLA scaffolds, indicating they have a high potential for use in bone tissue engineering applications. This article is protected by copyright. All rights reserved

    Improvement of dual-leached polycaprolactone porous scaffolds by incorporating with hydroxyapatite for bone tissue regeneration

    No full text
    <div><p>Polycaprolactone (PCL)/hydroxyapatite (HA) composite scaffolds were prepared by combining solvent casting and salt particulate leaching with a polymer leaching technique. The hydrophilicity of the dual-leached scaffold was improved by alkaline (NaOH) treatment. Well-defined interconnected pores were detected by scanning electron microscopy. The water absorption capacity of the NaOH-treated PCL/HA dual-leached scaffold increased greatly, confirming that the hydrophilicity of the scaffold was improved by NaOH treatment. The compressive modulus of the PCL/HA dual-leached scaffold was greatly increased by the addition of HA particles. An indirect evaluation of the cytotoxicity of all PCL dual-leached scaffolds with mouse fibroblastic cells (L929) and mouse calvaria-derived pre-osteoblastic cells (MC3T3-E1) indicated that the PCL dual-leached scaffolds are non-toxic to cells. The ability of the scaffolds to support mouse calvaria-derived pre-osteoblastic cell (MC3T3-E1) attachment, proliferation, differentiation, and mineralization was also evaluated. Although the viability of cells was lower on the PCL/HA dual-leached scaffold than on the tissue-culture polystyrene plates (TCPS) and on the other substrates at early time points, both the PCL and NaOH-treated PCL/HA dual-leached scaffolds supported the attachment of MC3T3-E1 at significantly higher levels than TCPS. During the proliferation period (days 1–3), all of the PCL dual-leached scaffolds were able to support the proliferation of MC3T3-E1 at higher levels than the TCPS; in addition, the cells grown on NaOH-treated PCL/HA dual-leached scaffolds proliferated more rapidly. The cells cultured on the surfaces of NaOH-treated PCL/HA dual-leached scaffolds had the highest rate of mineral deposition.</p></div
    corecore