52 research outputs found

    Environmental Systems Modeling and Management - University of Virginia, Charlottesville

    Get PDF
    Grad/Undergrad course in environmental systems modeling and management offered at University of Virginia, Charlottesville in Fall 2013

    Parent-of-origin-specific allelic associations among 106 genomic loci for age at menarche.

    Get PDF
    Age at menarche is a marker of timing of puberty in females. It varies widely between individuals, is a heritable trait and is associated with risks for obesity, type 2 diabetes, cardiovascular disease, breast cancer and all-cause mortality. Studies of rare human disorders of puberty and animal models point to a complex hypothalamic-pituitary-hormonal regulation, but the mechanisms that determine pubertal timing and underlie its links to disease risk remain unclear. Here, using genome-wide and custom-genotyping arrays in up to 182,416 women of European descent from 57 studies, we found robust evidence (P < 5 × 10(-8)) for 123 signals at 106 genomic loci associated with age at menarche. Many loci were associated with other pubertal traits in both sexes, and there was substantial overlap with genes implicated in body mass index and various diseases, including rare disorders of puberty. Menarche signals were enriched in imprinted regions, with three loci (DLK1-WDR25, MKRN3-MAGEL2 and KCNK9) demonstrating parent-of-origin-specific associations concordant with known parental expression patterns. Pathway analyses implicated nuclear hormone receptors, particularly retinoic acid and γ-aminobutyric acid-B2 receptor signalling, among novel mechanisms that regulate pubertal timing in humans. Our findings suggest a genetic architecture involving at least hundreds of common variants in the coordinated timing of the pubertal transition

    Variants in autophagy-related genes and clinical characteristics in melanoma: a population-based study

    Get PDF
    Autophagy has been linked with melanoma risk and survival, but no polymorphisms in autophagy-related (ATG) genes have been investigated in relation to melanoma progression. We examined five single-nucleotide polymorphisms (SNPs) in three ATG genes (ATG5; ATG10; and ATG16L) with known or suspected impact on autophagic flux in an international population-based case-control study of melanoma. DNA from 911 melanoma patients was genotyped. An association was identified between (GG) (rs2241880) and earlier stage at diagnosis (OR 0.47; 95% Confidence Intervals (CI) = 0.27-0.81, P = 0.02) and a decrease in Breslow thickness (P = 0.03). The ATG16L heterozygous genotype (AG) (rs2241880) was associated with younger age at diagnosis (P = 0.02). Two SNPs in ATG5 were found to be associated with increased stage (rs2245214 CG, OR 1.47; 95% CI = 1.11-1.94, P = 0.03; rs510432 CC, OR 1.84; 95% CI = 1.12-3.02, P = 0.05). Finally, we identified inverse associations between ATG5 (GG rs2245214) and melanomas on the scalp or neck (OR 0.20, 95% CI = 0.05-0.86, P = 0.03); ATG10 (CC) (rs1864182) and brisk tumor infiltrating lymphocytes (TILs) (OR 0.42; 95% CI = 0.21-0.88, P = 0.02), and ATG5 (CC) (rs510432) with nonbrisk TILs (OR 0.55; 95% CI = 0.34-0.87, P = 0.01). Our data suggest that ATG SNPs might be differentially associated with specific host and tumor characteristics including age at diagnosis, TILs, and stage. These associations may be critical to understanding the role of autophagy in cancer, and further investigation will help characterize the contribution of these variants to melanoma progression

    Fine-Scale Mapping of the 4q24 Locus Identifies Two Independent Loci Associated with Breast Cancer Risk

    Get PDF
    Background: A recent association study identified a common variant (rs9790517) at 4q24 to be associated with breast cancer risk. Independent association signals and potential functional variants in this locus have not been explored. Methods: We conducted a fine-mapping analysis in 55,540 breast cancer cases and 51,168 controls from the Breast Cancer Association Consortium. Results: Conditional analyses identified two independent association signals among women of European ancestry, represented by rs9790517 [conditional P = 2.51 × 10−4; OR, 1.04; 95% confidence interval (CI), 1.02–1.07] and rs77928427 (P = 1.86 × 10−4; OR, 1.04; 95% CI, 1.02–1.07). Functional annotation using data from the Encyclopedia of DNA Elements (ENCODE) project revealed two putative functional variants, rs62331150 and rs73838678 in linkage disequilibrium (LD) with rs9790517 (r2 ≥ 0.90) residing in the active promoter or enhancer, respectively, of the nearest gene, TET2. Both variants are located in DNase I hypersensitivity and transcription factor–binding sites. Using data from both The Cancer Genome Atlas (TCGA) and Molecular Taxonomy of Breast Cancer International Consortium (METABRIC), we showed that rs62331150 was associated with level of expression of TET2 in breast normal and tumor tissue. Conclusion: Our study identified two independent association signals at 4q24 in relation to breast cancer risk and suggested that observed association in this locus may be mediated through the regulation of TET2. Impact: Fine-mapping study with large sample size warranted for identification of independent loci for breast cancer risk

    Shared heritability and functional enrichment across six solid cancers

    Get PDF
    Correction: Nature Communications 10 (2019): art. 4386 DOI: 10.1038/s41467-019-12095-8Quantifying the genetic correlation between cancers can provide important insights into the mechanisms driving cancer etiology. Using genome-wide association study summary statistics across six cancer types based on a total of 296,215 cases and 301,319 controls of European ancestry, here we estimate the pair-wise genetic correlations between breast, colorectal, head/neck, lung, ovary and prostate cancer, and between cancers and 38 other diseases. We observed statistically significant genetic correlations between lung and head/neck cancer (r(g) = 0.57, p = 4.6 x 10(-8)), breast and ovarian cancer (r(g) = 0.24, p = 7 x 10(-5)), breast and lung cancer (r(g) = 0.18, p = 1.5 x 10(-6)) and breast and colorectal cancer (r(g) = 0.15, p = 1.1 x 10(-4)). We also found that multiple cancers are genetically correlated with non-cancer traits including smoking, psychiatric diseases and metabolic characteristics. Functional enrichment analysis revealed a significant excess contribution of conserved and regulatory regions to cancer heritability. Our comprehensive analysis of cross-cancer heritability suggests that solid tumors arising across tissues share in part a common germline genetic basis.Peer reviewe

    MC1R variants in childhood and adolescent melanoma: a retrospective pooled analysis of a multicentre cohort.

    Get PDF
    BACKGROUND: Germline variants in the melanocortin 1 receptor gene (MC1R) might increase the risk of childhood and adolescent melanoma, but a clear conclusion is challenging because of the low number of studies and cases. We assessed the association of MC1R variants with childhood and adolescent melanoma in a large study comparing the prevalence of MC1R variants in child or adolescent patients with melanoma to that in adult patients with melanoma and in healthy adult controls. METHODS: In this retrospective pooled analysis, we used the M-SKIP Project, the Italian Melanoma Intergroup, and other European groups (with participants from Australia, Canada, France, Greece, Italy, the Netherlands, Serbia, Spain, Sweden, Turkey, and the USA) to assemble an international multicentre cohort. We gathered phenotypic and genetic data from children or adolescents diagnosed with sporadic single-primary cutaneous melanoma at age 20 years or younger, adult patients with sporadic single-primary cutaneous melanoma diagnosed at age 35 years or older, and healthy adult individuals as controls. We calculated odds ratios (ORs) for childhood and adolescent melanoma associated with MC1R variants by multivariable logistic regression. Subgroup analysis was done for children aged 18 or younger and 14 years or younger. FINDINGS: We analysed data from 233 young patients, 932 adult patients, and 932 healthy adult controls. Children and adolescents had higher odds of carrying MC1R r variants than did adult patients (OR 1·54, 95% CI 1·02-2·33), including when analysis was restricted to patients aged 18 years or younger (1·80, 1·06-3·07). All investigated variants, except Arg160Trp, tended, to varying degrees, to have higher frequencies in young patients than in adult patients, with significantly higher frequencies found for Val60Leu (OR 1·60, 95% CI 1·05-2·44; p=0·04) and Asp294His (2·15, 1·05-4·40; p=0·04). Compared with those of healthy controls, young patients with melanoma had significantly higher frequencies of any MC1R variants. INTERPRETATION: Our pooled analysis of MC1R genetic data of young patients with melanoma showed that MC1R r variants were more prevalent in childhood and adolescent melanoma than in adult melanoma, especially in patients aged 18 years or younger. Our findings support the role of MC1R in childhood and adolescent melanoma susceptibility, with a potential clinical relevance for developing early melanoma detection and preventive strategies. FUNDING: SPD-Pilot/Project-Award-2015; AIRC-MFAG-11831

    Shared heritability and functional enrichment across six solid cancers

    Get PDF
    Quantifying the genetic correlation between cancers can provide important insights into the mechanisms driving cancer etiology. Using genome-wide association study summary statistics across six cancer types based on a total of 296,215 cases and 301,319 controls of European ancestry, here we estimate the pair-wise genetic correlations between breast, colorectal, head/neck, lung, ovary and prostate cancer, and between cancers and 38 other diseases. We observed statistically significant genetic correlations between lung and head/neck cancer (r(g) = 0.57, p = 4.6 x 10(-8)), breast and ovarian cancer (r(g) = 0.24, p = 7 x 10(-5)), breast and lung cancer (r(g) = 0.18, p = 1.5 x 10(-6)) and breast and colorectal cancer (r(g) = 0.15, p = 1.1 x 10(-4)). We also found that multiple cancers are genetically correlated with non-cancer traits including smoking, psychiatric diseases and metabolic characteristics. Functional enrichment analysis revealed a significant excess contribution of conserved and regulatory regions to cancer heritability. Our comprehensive analysis of cross-cancer heritability suggests that solid tumors arising across tissues share in part a common germline genetic basis
    corecore