100 research outputs found

    Fluorescent T7 display phages obtained by translational frameshift

    Get PDF
    Lytic phages form a powerful platform for the display of large cDNA libraries and offer the possibility to screen for interactions with almost any substrate. To visualize these interactions directly by fluorescence microscopy, we constructed fluorescent T7 phages by exploiting the flexibility of phages to incorporate modified versions of its capsid protein. By applying translational frameshift sequences, helper plasmids were constructed that expressed a fixed ratio of both wild-type capsid protein (gp10) and capsid protein fused to enhanced yellow fluorescent protein (EYFP). The frameshift sequences were inserted between the 3′ end of the capsid gene and the sequence encoding EYFP. Fluorescent fusion proteins are only formed when the ribosome makes a −1 shift in reading frame during translation. Using standard fluorescence microscopy, we could sensitively monitor the enrichment of specific binders in a cDNA library displayed on fluorescent T7 phages. The perspectives of fluorescent display phages in the fast emerging field of single molecule detection and sorting technologies are discussed

    A Neurodynamic Account of Spontaneous Behaviour

    Get PDF
    The current article suggests that deterministic chaos self-organized in cortical dynamics could be responsible for the generation of spontaneous action sequences. Recently, various psychological observations have suggested that humans and primates can learn to extract statistical structures hidden in perceptual sequences experienced during active environmental interactions. Although it has been suggested that such statistical structures involve chunking or compositional primitives, their neuronal implementations in brains have not yet been clarified. Therefore, to reconstruct the phenomena, synthetic neuro-robotics experiments were conducted by using a neural network model, which is characterized by a generative model with intentional states and its multiple timescales dynamics. The experimental results showed that the robot successfully learned to imitate tutored behavioral sequence patterns by extracting the underlying transition probability among primitive actions. An analysis revealed that a set of primitive action patterns was embedded in the fast dynamics part, and the chaotic dynamics of spontaneously sequencing these action primitive patterns was structured in the slow dynamics part, provided that the timescale was adequately set for each part. It was also shown that self-organization of this type of functional hierarchy ensured robust action generation by the robot in its interactions with a noisy environment. This article discusses the correspondence of the synthetic experiments with the known hierarchy of the prefrontal cortex, the supplementary motor area, and the primary motor cortex for action generation. We speculate that deterministic dynamical structures organized in the prefrontal cortex could be essential because they can account for the generation of both intentional behaviors of fixed action sequences and spontaneous behaviors of pseudo-stochastic action sequences by the same mechanism

    Changes in Cerebral Hemodynamics during Complex Motor Learning by Character Entry into Touch-Screen Terminals

    Get PDF
    Introduction Studies of cerebral hemodynamics during motor learning have mostly focused on neurorehabilitation interventions and their effectiveness. However, only a few imaging studies of motor learning and the underlying complex cognitive processes have been performed. Methods We measured cerebral hemodynamics using near-infrared spectroscopy (NIRS) in relation to acquisition patterns of motor skills in healthy subjects using character entry into a touchscreen terminal. Twenty healthy, right-handed subjects who had no previous experience with character entry using a touch-screen terminal participated in this study. They were asked to enter the characters of a randomly formed Japanese syllabary into the touchscreen terminal. All subjects performed the task with their right thumb for 15 s alternating with 25 s of rest for 30 repetitions. Performance was calculated by subtracting the number of incorrect answers from the number of correct answers, and gains in motor skills were evaluated according to the changes in performance across cycles. Behavioral and oxygenated hemoglobin concentration changes across task cycles were analyzed using Spearman\u27s rank correlations. Results Performance correlated positively with task cycle, thus confirming motor learning. Hemodynamic activation over the left sensorimotor cortex (SMC) showed a positive correlation with task cycle, whereas activations over the right prefrontal cortex (PFC) and supplementary motor area (SMA) showed negative correlations. Conclusions We suggest that increases in finger momentum with motor learning are reflected in the activity of the left SMC. We further speculate that the right PFC and SMA were activated during the early phases of motor learning, and that this activity was attenuated with learning progress

    Upper limits from the LIGO and TAMA detectors on the rate of gravitational-wave bursts

    Get PDF
    We report on the first joint search for gravitational waves by the TAMA and LIGO collaborations. We looked for millisecond-duration unmodelled gravitational-wave bursts in 473 hr of coincident data collected during early 2003. No candidate signals were found. We set an upper limit of 0.12 events per day on the rate of detectable gravitational-wave bursts, at 90% confidence level. From simulations, we estimate that our detector network was sensitive to bursts with root-sum-square strain amplitude above approximately 1-3×10 in the frequency band 700-2000 Hz. We describe the details of this collaborative search, with particular emphasis on its advantages and disadvantages compared to searches by LIGO and TAMA separately using the same data. Benefits include a lower background and longer observation time, at some cost in sensitivity and bandwidth. We also demonstrate techniques for performing coincidence searches with a heterogeneous network of detectors with different noise spectra and orientations. These techniques include using coordinated signal injections to estimate the network sensitivity, and tuning the analysis to maximize the sensitivity and the livetime, subject to constraints on the background

    Patent Management and Patent Information(9)

    No full text

    Tachyon Common Lisp

    No full text

    Influence of Tumor Characteristics on Visual Field Outcomes After Pituitary Adenoma Surgery

    No full text
    Background: There were few reports about the influence of tumor characteristics on the postoperative visual field outcomes after transsphenoidal surgery for pituitary adenoma. The purpose of this study was to explore the tumor characteristics that influenced perioperative visual field changes. Methods: Patients who underwent transsphenoidal surgery under a diagnosis of pituitary adenoma at the Kyoto University Hospital between April 2012 and December 2018 were retrospectively enrolled. Correlations among circumpapillary retinal nerve fiber layer thickness, preoperative and postoperative mean deviation (MD) of visual field, MD change after the surgery, and maximum tumor diameter were evaluated by measuring Pearson correlation coefficient. We evaluated the influences on postoperative MD using a generalized estimating equation for univariate and multivariate regression analyses. We also compared the characteristics of cystic and solid tumors. Results: Thirty-two eyes of 18 patients were included in this study (9 male and 9 female patients). Postoperative MD positively correlated with maximum tumor diameter only in multivariate regression {β = 0.22 (95% confidence interval [CI], 0.004–0.43), P = 0.046}, although maximum tumor diameter negatively correlated with postoperative MD in univariate regression (β = −0.16 [95% CI, −0.58 to 0.26], P = 0.46). In the investigation of perioperative MD changes, eyes with cystic tumors showed significantly better improvement those with solid tumors (8.93 ± 7.85 vs 0.18 ± 6.56 dB, P = 0.007). Conclusions: Cystic and solid tumors show different characteristics of visual loss and visual field defects. The MD in eyes with cystic tumors improved significantly more than that in eyes with solid tumors
    corecore