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We report on the first joint search for gravitational waves bythe TAMA and LIGO collaborations. We looked
for millisecond-duration unmodelled gravitational-wavebursts in 473 hr of coincident data collected during
early 2003. No candidate signals were found. We set an upper limit of 0.12 events per day on the rate of
detectable gravitational-wave bursts, at 90% confidence level. From simulations, we estimate that our detector
network was sensitive to bursts with root-sum-square strain amplitude above approximately1-3×10−19 Hz−1/2

in the frequency band 700-2000 Hz. We describe the details ofthis collaborative search, with particular emphasis
on its advantages and disadvantages compared to searches byLIGO and TAMA separately using the same data.
Benefits include a lower background and longer observation time, at some cost in sensitivity and bandwidth. We
also demonstrate techniques for performing coincidence searches with a heterogeneous network of detectors
with different noise spectra and orientations. These techniques include using coordinated signal injections to
estimate the network sensitivity, and tuning the analysis to maximize the sensitivity and the livetime, subject to
constraints on the background.
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I. INTRODUCTION

At present several large-scale interferometric gravitational-
wave detectors are operating or are being commissioned:
GEO [1], LIGO [2], TAMA [3], and Virgo [4]. In addition,
numerous resonant-mass detectors have been operating for a
number of years [5, 6, 7]. Cooperative analyses by these ob-
servatories could be valuable for making confident detections
of gravitational waves and for extracting maximal informa-
tion from them. This is particularly true for gravitational-
wave bursts (GWBs) from systems such as core-collapse su-
pernovae [8, 9, 10, 11], black-hole mergers [12, 13], and
gamma-ray bursters [14], for which we have limited theoret-
ical knowledge of the source and the resulting gravitational
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waveform to guide us. Advantages of coincident observations
include a decreased background from random detector noise
fluctuations, an increase in the total observation time during
which some minimum number of detectors are operating, and
the possibility of locating a source on the sky and extracting
polarization information (when detectors at three or more sites
observe a signal) [15]. Independent observations using differ-
ent detector hardware and software also decrease the possibil-
ity of error or bias.

There are also disadvantages to joint searches. Most no-
tably, in a straightforward coincidence analysis the sensitivity
of a network is limited by the least sensitive detector. In ad-
dition, differences in alignment mean that different detectors
will be sensitive to different combinations of the two polariza-
tion components of a gravitational wave. This complicates at-
tempts to compare the signal amplitude or waveform as mea-
sured by different detectors. Finally, differences in hardware,
software, and algorithms make collaborative analyses techni-
cally challenging.

In this article we present the first observational results from
a joint search for gravitational waves by the LIGO and TAMA
collaborations. We perform a coincidence analysis target-
ing generic millisecond-duration GWBs, requiring candidate
GWBs to be detected by all operating LIGO and TAMA in-
terferometers. This effort is complementary to searches for
GWBs performed independently by LIGO [16] and TAMA
[17] using the same data that we analyze here. Our goal is
to highlight the strengths and weaknesses of our joint search
relative to these single-collaboration searches, and to demon-
strate techniques for performing coincidence searches with a
heterogeneous network of detectors with different noise spec-
tra and orientations. This search could form a prototype for
more comprehensive collaborative analyses in the future.

In Section II we review the performance of the LIGO and
TAMA detectors during the joint observations used for this
search. We describe the analysis procedure in Section III, and
the tuning of the analysis in Section IV. The results of the
search are presented in Section V. We conclude with some
brief comments in Section VI.

II. LIGO-TAMA NETWORK AND DATA SETS

The LIGO network consists of a 4 km interferometer “L1”
near Livingston, Louisiana and 4 km “H1” and 2 km “H2” in-
terferometers which share a common vacuum system on the
Hanford site in Washington. The TAMA group operates a 300
m interferometer “T1” near Tokyo. These instruments attempt
to detect gravitational waves by monitoring the interference of
the laser light from each of two perpendicular arms. Minute
differential changes in the arm lengths produced by a pass-
ing gravitational wave alter this interference pattern. Basic
information on the position and orientation of the LIGO and
TAMA detectors can be found in [18, 19]. Detailed descrip-
tions of their operation can be found in [2, 16, 17, 20].

In a search for gravitational-wave bursts, the key character-
istics of a detector are the orientation, the noise spectrumand
its variability, and the observation time.

The response of an interferometer to a gravitational wave
depends on the relative orientation of the source and the de-
tector, as well as on the signal polarization. Figure 1 shows
the variation in the polarization-averaged sensitivitiesof the
LIGO and TAMA detectors as a function of the sky position
of the source. It is clear from these figures that LIGO and
TAMA have maximum sensitivity to different portions of the
sky. This complicates a search based on coincident detections:
there is a loss of sensitivity to weak signals; and it is difficult
to compare quantitatively the signal amplitude or waveform
as measured by the LIGO and TAMA detectors since they will
not, in general, be the same. (This was not a significant prob-
lem in previous multi-detector searches by LIGO [16, 21] and
the IGEC [7], since they employed approximately co-aligned
detectors.) We account for these effects by using coordinated
simulations to guide the tuning of our analysis so as to max-
imize the detection efficiency of the network, and we forego
amplitude and waveform consistency tests between LIGO and
TAMA; see Sections III, IV.

The data analyzed in this search were collected during the
LIGO science run 2 (S2) and the TAMA data taking run 8
(DT8), between 14 February 2003 and 14 April 2003. Figures
2 and 3 show representative strain noise spectra from each
detector during S2/DT8. Ignoring differences in antenna re-
sponse, requiring coincident detection of a candidate signal by
both LIGO and TAMA means that the sensitivity of the net-
work will be limited by the least sensitive detector. This mo-
tivates concentrating our efforts on the frequency band where
all detectors have comparable sensitivity; i.e., near the mini-
mum of the noise envelope. Specifically, we choose to search
for GWBs that have significant power in the frequency range
700-2000 Hz. Restricting the frequency range in this man-
ner reduces the background due to coincident noise fluctua-
tions, while preserving the sensitivity of the network to GWBs
that are detectable by both LIGO and TAMA. Note also that
the LIGO collaboration has carried out an independent GWB
analysis of the S2 data concentrating on the band 100-1100
Hz [16]. There is thus no danger in missing a real detectable
burst which might have occurred at lower frequencies, sinceit
should have been detected by this complementary search.

Table I shows the amount of time in S2/DT8 during which
each detector was operating. As we shall see in Section IV B,
the LIGO-TAMA network achieved its lowest background
rate during periods when both of the LIGO Hanford interfer-
ometers (H1 and H2) and at least one of the LIGO Livingston
and TAMA interferometers (L1 and T1) were operating. Re-
stricting our analysis to these detector combinations gives us
three independent data sets: the quadruple-coincidence data
set, denoted H1-H2-L1-T1; the data set during which L1 was
not operating, denoted H1-H2-nL1-T1, and the data set during
which T1 was not operating, denoted H1-H2-L1-nT1 (“n” for
“not operating”). The observation time for each of these data
sets is also shown in Table I.

The LIGO-TAMA quadruple-coincidence data set (H1-H2-
L1-T1) is particularly well-suited to making confident detec-
tions of gravitational-wave bursts, since combining so many
detectors naturally suppresses the background from acciden-
tal coincidences – to well below one per year, in our case –
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FIG. 1: Polarization-averaged antenna amplitude responses
(

F 2
+ + F 2

×

)1/2
∈ [0, 1], in Earth-based coordinates. [See equation (4.3) and [19]

for definitions of these functions and of Earth-based coordinates.] The top plot is for the LIGO Hanford detectors (H1, H2). The middle plot is
for LIGO Livingston (L1). The bottom plot is for TAMA (T1). High contour values indicate sky directions of high sensitivity. The directions
of maximum (null) sensitivity for each detector are indicated by the * (.) symbols. The directions of LIGO’s maximum sensitivity lie close to
areas of TAMA’s worst sensitivity and vice versa.

while maintaining high detection sensitivity. Meanwhile,the
triple-coincidence data sets (H1-H2-nL1-T1 and H1-H2-L1-
nT1) contribute the bulk of our observation time. In particular,
the high T1 duty cycle (82%) allows us to use the large amount
of H1-H2 data in H1-H2-nL1-T1 coincidence that would oth-
erwise be discarded because of the poor L1 duty cycle (33%).

The LIGO-TAMA detector network therefore has more than
twice as much useful data as the LIGO detectors alone. This
increase in observation time allows a proportional decrease in
the limit on the GWB rate which we are able to set with the
combined detector network (for negligible background), and
increases the probability of seeing a rare strong gravitational-
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FIG. 3: The same amplitude noise spectra as in Figure 2, focusing on
the frequency range 700-2000 Hz. The peaks at multiples of 400/3
Hz in the TAMA spectrum are due to a coupling between the radio-
frequency modulation signal and the laser source; these frequencies
are removed by the data conditioning discussed in Section III A 2.

wave event. Furthermore, while the LIGO-TAMA network
uses only half of the TAMA data, we shall see that the sup-
pression of the background by coincidence allows it to place
stronger upper limits on weak GWBs than can TAMA alone.

The LIGO and TAMA detectors had not yet reached their
design sensitivities by the time of the S2/DT8 run; neverthe-
less, the quantity of coincident data available – nearly 600
hours – provided an excellent opportunity to develop and test
joint searches between our collaborations. In addition, the
sensitivity of these instruments in their common frequency
band was competitive with resonant-mass detectors (see for

detector observation fraction of total

combination time (hr) observation time

H1 1040 74%

H2 821 58%

L1 536 38%

T1 1158 82%

H1-H2-L1-T1 256 18%

H1-H2-nL1-T1 320 23%

H1-H2-L1-nT1 62 4%

network totals 638 45%

TABLE I: Observation times and duty cycles of the LIGO and
TAMA detectors individually, and in various combinations,during
S2/DT8. The symbol nL1 (nT1) indicates times when L1 (T1) was
not operating. The network data sets are disjoint (non-overlapping).

example [22]), but with a much broader bandwidth. Finally,
there is always the possibility of a fortunate astrophysical
event giving rise to a detectable signal.

III. ANALYSIS METHOD

Our analysis methodology is similar, though not identi-
cal, to that used in the LIGO S1 and S2 un-triggered GWB
searches [16, 21]. The essential steps are illustrated in Fig-
ure 4. These are:

1. Search the data from each detector separately for burst
events.

2. Look for simultaneous (“coincident”) events in all op-
erating detectors.

3. Perform a waveform consistency test on the data from
the LIGO interferometers around the time of each coin-
cidence.

4. Estimate the background rate from coincident detec-
tor noise fluctuations by repeating the coincidence and
waveform consistency tests after artificially shifting in
time the events from different sites.

5. Compare the number of coincidences without time
shifts to that expected from the background to set an
upper limit on the rate of detectable bursts. (A signifi-
cant excess of events indicates a possible detection.)

6. Estimate the network sensitivity to true GWBs (i.e., the
false dismissal probability) by adding simulated signals
to the detector data and repeating the analysis.

In the following subsections we describe these steps in more
detail. In addition, the various thresholds used for event gener-
ation, coincidence, etc., are tuned to maximize the sensitivity
of the analysis; this tuning is described in Section IV B.

The LIGO software used in this analysis is available pub-
licly [23].
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FIG. 4: Schematic of our analysis pipeline. Data from each detector
is analyzed for bursts using the TFClusters (TFC) or Excess Power
(POW) algorithm. Optionally, a time shift of 5 - 115 s is addedto the
event triggers from some sites. We look for simultaneous events from
each operating detector, then apply ther-statistic waveform consis-
tency test to the data from the LIGO detectors. Surviving coinci-
dences are possible GWBs if no time shifts were used; otherwise
they are accidental coincidences (background). The detection effi-
ciency of the network is estimated by adding simulated GWBs to the
data from each detector and repeating the analysis. Note that one of
the L1 or T1 detectors may not be operating at any given time.

A. Event trigger generation

To maintain sensitivity to the widest range of signals, our
burst-detection algorithms do not use templates. Instead,they
look for transient excesses of power in the detector output.
The production of lists of transient events, orevent triggers,
was done independently by LIGO and TAMA, using differ-
ent algorithms. Since both of the algorithms used have been
described elsewhere, we review them only briefly.

1. TFClusters

The LIGO triggers were produced using the TFClusters
burst-detection algorithm [21, 24].

Before processing in TFClusters, the data from a given de-
tector are first high-pass filtered and whitened using a lin-
ear predictor error filter [25, 26]. The TFClusters algorithm
then constructs a time-frequency spectrogram of the filtered
data by segmenting the data into 50% overlapping time in-
tervals and Fourier transforming. The fractionp of highest-
power pixels in each frequency bin are selected asblackpix-
els, wherep is the black pixel probability. (Note that this
thresholding is inherently adaptive, so that the rate of trig-
gers is not unduly affected by slow trends in the noise floor.)
Event triggers are formed from clusters of nearest-neighbor
black pixels that exceed a specified size. In keeping with our
choice of frequency band, only triggers that overlap 700-2000
Hz are retained; all others are discarded. These triggers are
then passed to a function which makes refined estimates of
their peak time, duration, central frequency, bandwidth, and
signal-to-noise ratio.

2. Excess Power

The TAMA triggers are generated using an excess power
algorithm, following the procedure used in a TAMA-only
search for GWBs [17].

The TAMA data are first conditioned to remove lines (in-
cluding the peaks at multiples of 400/3 Hz visible in Fig. 3).It
is then divided into 87.5% overlapping segments and Fourier
transformed. The resulting spectrogram is normalized by the
background estimated over the previous 30 min. The signal-
to-noise ratio (SNR) is then summed over a fixed set of fre-
quency bins in the range 230-2500 Hz, and a trigger produced
when the SNR exceeds the thresholdρ0 = 4. Triggers sepa-
rated by less than 25 ms are reported as a single event charac-
terized by the peak time, duration, and SNR. (Due to the use
of a frequency mask, no frequency information is assigned to
the trigger.) Finally, triggers occurring simultaneouslywith
excursions in the intensity of the light in the recycling cavity
are vetoed (ignored), as are triggers that fail a time-scaletest
designed to pass only millisecond-duration events [17].

B. Coincidence and background

To minimize the possibility of falsely claiming a
gravitational-wave detection, we require any candidate GWB
to be observed simultaneously by all operating detectors. In
this section we explain how the coincidence test was imposed,
and how the background rate was estimated.

1. Coincidence

The coincidence test is very simple. Each eventi is charac-
terized by a peak timeti and a duration∆ti. Events from two
detectors are defined to be in coincidence if the difference in
their peak times satisfies

|ti − tj | < w +
1

2
(∆ti + ∆tj) . (3.1)

Here w is a coincidence “window” which accounts for the
light travel time between the detectors in question; in prac-
tice we use windows 10 - 20 ms longer than the light travel
time for safety. The duration-dependent term allows for the
estimated peak time of coincident triggers to be farther apart
if the triggers are long compared to the coincidence window
[27]; one may consider this as an allowance for the uncertainty
in the determination of the peak time. A set of event triggers
i, j, . . . , k is defined to be in coincidence if each pair(i, j),
(i, k), (j, k), etc., is in coincidence.

Ideally, the windoww for each pair of detectors should be
as short as possible, to minimize the rate of accidental coin-
cidences between noise events in the various detectors, while
still being long enough that all simulated signals detectedare
in coincidence. The windows for our analysis are determined
using the simulations described in Section IV B.

It is observed that triggers in the S2 and DT8 data tend to
be produced in clusters, on time scales of order 1 s or less.
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FIG. 5: Autocorrelogram of trigger peak times from each detector.
These are histograms of the difference in peak time between each
pair of triggers from a given detector, binned in 0.2 s intervals. The
horizontal axis is the time difference (units of s); the vertical axis is
the number of trigger pairs per bin divided by the observation time
and the bin width (units of s−2). With this normalization, the mean
value is the square of the trigger rate. An autocorrelogram value sig-
nificantly above the mean indicates a correlation in the timeof event
triggers. Each detector shows some excess above Poisson rates at
delays of up to a few seconds. The sharp dip in the T1 curve near
zero time is due to the clustering of the T1 triggers. The smaller rel-
ative fluctuations in the L1 and T1 curves are due to the much higher
trigger rates from these detectors, which results in more triggers per
bin.

We therefore count groups of coincident triggers that are sep-
arated in time by less than 200 ms as a single GWB candidate
when estimating the GWB rate.

Note that no attempt is made to compare the amplitude or
SNR of events between detectors. Such comparisons are dif-
ficult due to the differences in alignment of the detectors (ex-
cept for the H1-H2 pair); see Figure 1. We do, however, im-
pose a test on the consistency of the waveform shape as mea-
sured by the various LIGO detectors; see Section III C.

2. Background

Even in the absence of real gravitational-wave signals, one
expects some coincidences between random noise-generated
events. We estimate this background rate by repeating the co-
incidence procedure after adding artificial relative time shifts
of ±5, 10, . . . , 115 s to the triggers from the LIGO Hanford
and/or TAMA sites, as indicated in Figure 4. (We do not shift
the triggers from H1 and H2 relative to each other, in case
there are true correlated noise coincidences caused by local
environmental effects.) These shifts are much longer than the
light travel time between the sites, so that any resulting co-
incidence cannot be from an actual gravitational wave. They
are also longer than detector noise auto-correlation times(see
Figure 5), and shorter than time scales on which trigger rates
vary, so that each provides an independent estimate of the ac-
cidental coincidence rate.

The H1-H2-nL1-T1 and H1-H2-L1-nT1 data sets each
come from 2 sites, so that we have 46 nonzero relative
time shifts in{−115,−110, . . . , 115} s. Hence, the small-

est nonzero background rate that can be measured for these
data sets is approximately(46T )−1, whereT is the observa-
tion time [28]. The H1-H2-L1-T1 network has 3 sites, for a
total of 472 − 1 = 2208 independent time shifts. We use all
of these time shifts, so the smallest nonzero background rate
that we can measure for the quadruple-coincidence data set is
approximately(2208T )−1.

C. Waveform consistency test

The event generation and coincidence procedures outlined
above are designed to detect simultaneous excesses of power
in each detector, without regard to the waveform of the event.
To test if the waveforms as measured in each detector are con-
sistent with one another (as one would expect for a GWB), we
apply a test based on the linear correlation coefficient between
data streams, ther-statistic [29]. We will see in Section IV B
that ther-statistic test is very effective at eliminating acciden-
tal coincidences, with very little probability of rejecting a true
gravitational-wave signal. (See also [16] for demonstrations
of ther-statistic with other simulated GWB waveforms.)

The r-statistic test consists of computing the cross-
correlation of the time-series data from pairs of detectors
around the time of a coincidence. A GWB will increase the
magnitude of the cross-correlation above that expected from
noise alone. The measured cross-correlations are compared
to those expected from Gaussian noise using a Kolmogorov-
Smirnov test with 95% confidence level. If not consistent,
then the logarithmic significance (negative log of the probabil-
ity) of each cross-correlation is computed and averaged over
detector pairs. We refer to the resulting quantity asΓ. If the
maximum averaged significance exceeds a thresholdΓ0, then
the coincidence is accepted as a candidate GWB; otherwise it
is discarded. The thresholdΓ0 is chosen sufficiently high to
reduce the background by the desired amount without reject-
ing too many real GWB signals. For more details on the test,
see [29].

Ther-statistic test was developed for use in LIGO searches,
and it is based on the premise that a real gravitational-wave
signal will have similar form in different detectors. It is not
clear that it can be applied safely to detectors with very dif-
ferent orientations (such as LIGO and TAMA), which see dif-
ferent combinations of the two polarizations of a gravitational
wave. Since this matter is still under study, we use ther-
statistic test to compare data between the LIGO detectors only
(i.e., H1-H2, H2-L1, and L1-H1, but not including T1).

D. Statistical analysis

Our scientific goal of this search is to detect GWBs, or in
the absence of detectable signals, to set an upper limit on their
mean rate, and to estimate the minimum signal amplitude to
which our network is sensitive.

The coincidence procedure described in Section III B pro-
duces two sets of coincident events. The set with no artificial
time shift is produced by background noise and possibly also
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by gravitational-wave bursts. The time-shifted set contains
only events produced by noise, and hence characterizes the
background.

Given the number of candidate GWBs and the estimate
of the number of accidental coincidences expected from the
background, we use the Feldman-Cousins technique [30] to
compute the 90% confidence level upper limit or confidence
interval on the rate of detectable gravitational-wave bursts. In
practice, since we are not prepared to claim a detection based
only on such a statistical analysis, we choose in advance to use
only the upper value of the Feldman-Cousins confidence inter-
val. We report this upper valueR90% as an upper limit on the
GWB rate, regardless of whether the Feldman-Cousins confi-
dence interval is consistent with a rate of zero. Because of this
modification our upper limit procedure has a confidence level
greater than 90%; i.e., our upper limits are conservative.

The rate upper limitR90% from the Feldman-Cousins pro-
cedure applies to GWBs for which our network has perfect
detection efficiency. For a population of GWB sources for
which our detection efficiency isǫ(h), whereh is the GWB
amplitude and0 ≤ ǫ(h) ≤ 1, the corresponding rate upper
limit R90%(h) is

R90%(h) ≤ R90%

ǫ(h)
. (3.2)

This defines a region of rate-versus-strength space which is
excluded at 90% confidence by our analysis. The exact do-
main depends on the signal type through our efficiencyǫ(h).
We will construct such exclusion regions for one hypothetical
population of GWB sources.

IV. SIMULATIONS AND TUNING

There are a number of parameters in the analysis pipeline of
Figure 4 that can be manipulated to adjust the sensitivity and
background rate of our network. The most important are the
thresholds for trigger generation (the TFClusters black pixel
probabilityp and the Excess Power SNR thresholdρ0), ther-
statistic thresholdΓ0, and the coincidence windowsw for each
detector pair. Our strategy is to tune these parameters to max-
imize the sensitivity of the network to millisecond-duration
signals while maintaining a background of less than 0.1 sur-
viving coincidences expected over the entire S2/DT8 data set.

A. Simulations

The LIGO-TAMA network consists of widely separated de-
tectors with dissimilar noise spectra and antenna responses.
To estimate the sensitivity of this heterogeneous network we
add (or “inject”) simulated gravitational-wave signals into the
data streams from each detector, and re-analyze the data in
exactly the same manner as is done in the actual gravitational-
wave search; this is indicated in Figure 4 by the “simulated
signals” box. These injections are done coherently; i.e., they
correspond to a GWB incident from a specific direction on the

sky. The simulated signals include the effects of the antenna
response of the detectors, and the appropriate time delays due
to the physical separation of the detectors.

These simulations require that we specify a target popula-
tion, including the waveform and the distribution of sources
over the sky. We select a family of simple waveforms that
have millisecond durations and that span the frequency range
of interest, 700-2000 Hz. Specifically, we use linearly polar-
ized Gaussian-modulated sinusoids:

h+(t) = hrss

(

π

2f2
0

)

−1/4

sin [2πf0(t − t0)] e
−

(t−t0)2

τ2 , (4.1)

h×(t) = 0 .

(Other waveforms, along with these, have been considered in
[16, 17, 21].) Heret0 is the peak time of the signal envelope.
The central frequencyf0 of each injection is picked randomly
from the values 700, 849, 1053, 1304, 1615, 2000 Hz, which
span our analysis band in logarithmic steps. The efficiency of
detection of these signals thus gives us a measure of the net-
work sensitivity averaged over our band. We set the envelope
width asτ = 2/f0, which gives durations of approximately 1-
3ms. The corresponding quality factor isQ ≡

√
2πf0τ = 8.9

and the bandwidth is∆f = f0/Q ≃ 0.1f0, so these are
narrow-band signals.

The quantityhrss in equation (4.1) is the root-sum-square
amplitude of the plus polarization:

[
∫

∞

−∞

dt h2
+(t)

]1/2

= hrss (4.2)

We findhrss to be a convenient measure of the signal strength.
While it is a detector-independent amplitude,hrsshas the same
units as the strain noise amplitude spectrum of the detectors,
which allows for a direct comparison of the signal amplitude
relative to the detector noise. All amplitudes quoted in this
report arehrss amplitudes.

Lacking any strong theoretical bias for probable sky posi-
tions of sources of short-duration bursts, we distribute the sim-
ulated signals isotropically over the sky. We select the polar-
ization angle randomly with uniform distribution over[0, π].

A total of approximately 16800 of these signals were in-
jected into the S2/DT8 data. For each signal, the actual wave-
form h(t) as it would be seen by a given detector was com-
puted,

h(t) = F+h+(t) + F×h×(t) = F+h+(t) , (4.3)

andh(t) was added to the detector data. HereF+, F× are the
usual antenna response factors, which are functions of the sky
direction and polarization of the signal relative to the detector
(see for example [19]). The signals in the different detectors
were also delayed relative to one another according to the sky
position of the source.

These simulated signals were shared between LIGO and
TAMA by writing the signalsh(t) in frame files [31, 32], in-
cluding the appropriate detector response and calibrationef-
fects. These signal data were added to the data streams from
the individual detectors before passing through TFClusters or
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Excess Power. In addition to providing estimates of the net-
work detection efficiency, the ability of these two independent
search codes to recover the injected signals is an importanttest
of the validity of the pipeline.

An injected signal is considered detected if there is a coin-
cident event from the network within 200 ms of the injection
time. The network efficiencyǫ(hrss) is simply the fraction of
events of amplitudehrss which are detected by the network.
We find that good empirical fits to the measured efficiencies
can be found in the form

ǫ(hrss) =
1

1 +

(

hrss

h50%
rss

)α[1+β tanh(hrss/h50%
rss )]

, (4.4)

whereh50%
rss > 0, α < 0, and−1 < β ≤ 0. Hereh50%

rss is
the amplitude at which the efficiency is 0.5,α parameterizes
the width of the transition region, andβ parameterizes the
asymmetry of the efficiency curve abouthrss = h50%

rss . When
presenting efficiencies we will use fits of this type.

As we shall see, the efficiency transitions from zero (for
weak signals) to unity (for strong signals), over about an or-
der of magnitude in signal amplitude. It proves convenient
to characterize the network sensitivity by the single num-
ber h50%

rss at which the efficiency is 0.5. This amplitude is a
function of the trigger-generation thresholds; it and the back-
ground rate are the two performance measures that we use to
guide the tuning of our analysis.

B. Tuning procedure

As stated earlier, our tuning strategy is to maximize the de-
tection efficiency of the network while maintaining a back-
ground rate of less than approximately 0.1 events over the en-
tire data set. For simplicity, we chose a single tuning for the
production and analysis of all event triggers from all data sets.
This strategy is implemented as follows:

1. For TFClusters, the efficiency for detecting the sine-
Gaussian signals and the background rate are mea-
sured for each detector for a large number of parame-
ter choices. For each black-pixel probabilityp (which
determines the background rate) the other ETG param-
eters are set to obtain the lowesth50%

rss value [33]. The
TAMA Excess Power algorithm is tuned independently
for short-duration signals as described in [17]. The re-
sulting performance of each detector is shown in Fig-
ure 6.

2. The coincidence windoww for each detector pair in
equation (3.1) is fixed by performing coincidence on the
triggers from the simulated signals. We find that select-
ing windows only slightly larger (by∼ 1ms) than the
light travel time between the various detector pairs (see
Table II) ensures that all of the injections detected by all
interferometers produce coincident triggers. For sim-
plicity, we use a single window ofw = 20 ms for coin-
cidence between any LIGO detectors [34] and a single

detector pair separation (km) separation (ms)

LHO-LLO 3002 10.0

LLO-TAMA 9683 32.3

TAMA-LHO 7473 24.9

TABLE II: Separation of the LIGO and TAMA interferometers, us-
ing data from [19].

window of w = 43 ms for coincidence between any
LIGO detector and TAMA. These choices correspond
to using the longest possible time delay plus a∼10 ms
safety margin.

3. To obtain the best network sensitivity versus back-
ground rate, we select the single-detector ETG thresh-
olds (p, ρ0) to matchh50%

rss as closely as possible be-
tween the detectors. (This is similar in spirit to the
IGEC tuning [7], although not the same, as we are
not able to easily compare the amplitude of individual
events from our misaligned broadband detectors.) In
practice, the TAMA detector has slightly poorer sen-
sitivity than the LIGO detectors. We therefore set the
TAMA threshold as low as we consider feasible,ρ0 =
4; this sets the sensitivity of the network as a whole.
We then choose the LIGO single-detector thresholds for
similar efficiency.

4. The final threshold is that for ther-statistic, denoted
β. In practice we find that ther-statistic has negligible
effect on the network efficiency forβ < 5. We setβ =
3, which proved sufficient to eliminate all time-lagged
(accidental) coincidences while rejecting less than 1%
of the injected signals.

Figure 6 shows the resultingh50%
rss and background rate for

each of the three coincidence combinations. Table III shows
trigger rates and livetimes for each coincidence combination.

We note from Figure 6 that the network background rates
are 5-9 orders of magnitude smaller than the rates of the
individual detectors. Roughly speaking, adding a detector
with event rateRi and coincidence windoww to the network
changes the network background rate by a factor of approx-
imately2Riw. From the single-detector rates of Figure 6 or
Table III we estimate that H1 and H2 each reduce the back-
ground rate by∼ 103, L1 by∼ 50, and T1 by∼ 10. This is
why we require both H1 and H2 to be operating: they suppress
strongly the background for our network.

We have confirmed that the background rate estimated from
time shifts is consistent with that expected from Poisson statis-
tics. Assuming Poisson statistics, the expected background
rateR for a set ofN detectors with ratesRi is approximately

R ≈ 1

w

N
∏

i=1

2Riw (4.5)

where we assume a single coincidence windoww for sim-
plicity. Using this formula and the single-detector rates from
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rss for 50% detection efficiency versus back-
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and triangle denote the resulting amplitude at 50% efficiency and an
upper limit on the background rate for the H1-H2-L1-T1, H1-H2-
nL1-T1, and H1-H2-L1-nT1 networks after ther-statistic with these
tuning choices. (We can only compute upper limits on the back-
ground rates for coincidence because no time-shifted coincidences
survive the waveform consistency test.) The efficiency is averaged
over all of the sine-Gaussian signals in our analysis band.

Table III, one predicts background rates before the r-statistic
consistent with those determined from time delays. This
agreement gives increased confidence in our background esti-
mation.

It is also worth noting that the 50% efficiency pointh50%
rss

is a very shallow function of the background rate for multiple
detectors. Hence, there is little value in lowering the trigger
thresholds to attempt to detect weaker signals. For example,
allowing the triple-coincidence background rate of TFClusters
(the rate for the H1-H2-L1-nT1 data) to increase by 3 orders
of magnitude lowersh50%

rss by less than a factor of 2. For four
detectors,h50%

rss varies even more slowly with the background
rate. This is why we tune for≪1 background event over the
observation time; there is almost no loss of efficiency in doing
so.

To avoid bias from tuning our pipeline using the same data
from which we derive our upper limits, the tuning was done
without examining the full zero-time-shift coincidence trigger
sets. Instead, preliminary tuning was done using a 10% sub-
set of the data, referred to as theplayground, which was not
used for setting upper limits. Final tuning choices were made
by examining the time-shifted coincidences and the simula-
tions over the full data set. As it happens, the only parameter
adjusted in this final tuning was ther-statistic thresholdΓ0;
we required the full observation time to have enough back-
ground coincidences to allow reasonably accurate estimates
of the background suppression by ther-statistic test.

Figure 7 shows the efficiency of the LIGO-TAMA network
as a function of signal amplitude for each of the three data sets,
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FIG. 7: Detection efficiency over the various data sets individually,
and combined, using the final tuning. The combined efficiencycurve
is the average of the curves for the three data sets, weightedby their
observation times. These efficiencies are averaged over allof the
sine-Gaussian signals in our analysis band. There is a statistical un-
certainty at each point in these curves of approximately 1-3% due to
the finite number of simulations performed.

and also the average efficiency weighted by the observation
time of each data set. By design, the efficiencies are very
similar, withh50%

rss values in the range1-2 × 10−19 Hz−1/2.
Figure 8 shows how the combined efficiency varies across

our frequency band; the weak dependence on the central fre-
quency of the injected signal is a consequence of the flatness
of the envelope of the detector noise spectra shown in Fig-
ure 3. This is corroborated by the efficiency for the H1-H2-
L1-nT1 data set (without TAMA), shown in Figure 9. The
improvement in the low-frequency sensitivity for this dataset
indicates that TAMA limits the network sensitivity at low fre-
quencies, as expected from the noise spectra.

C. Systematic and statistical uncertainties

The only significant systematic uncertainty in our analy-
sis is in the overall multiplicative scale of the calibration (the
coupling of strain to the output of the individual detectors).
The “1-σ” uncertainties were estimated as∼9% for L1 and
∼4% for each of H1, H2, and T1 [35]. Simple Monte-Carlo
modeling indicates that, with 90% confidence, theh50%

rss value
for any given network combination will not be more than 4%
larger than the estimated value due to these uncertainties.We
allow for this uncertainty in our rate-versus-strength plots by
shifting our limit curves to largerhrss by 4%.

The main statistical uncertainty in our results is in the ef-
ficiency at any given signal amplitude, due to the finite num-
ber of simulations performed. This can be quantified through
the uncertainty in the parameters found for the efficiency fits
(4.4), and is typically less than 5%. We account for this by
shifting our rate-versus-strength upper limit curves upward at
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FIG. 8: Detection efficiency for the combined data set, by central
frequencyf0 of the sine-Gaussian signal in equation (4.1). There is a
statistical uncertainty at each point in these curves of approximately
2-4% due to the finite number of simulations performed.
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FIG. 9: Detection efficiency for the H1-H2-L1-nT1 data set (i.e.,
with only the LIGO detectors operating), by central frequency f0 of
the sine-Gaussian signal in equation (4.1). There is a statistical un-
certainty at each point in these curves of approximately 2-6% due
to the finite number of simulations performed. The improved effi-
ciency for lower-frequency signals indicates that sensitivity at these
frequencies is limited by the TAMA detector. This behavior is con-
sistent with the noise spectra shown in Figure 3.

each amplitude by 1.28 times the estimated statistical uncer-
tainty in the corresponding efficiency. (The factor 1.28 gives
a 90% limit, assuming Gaussian statistics.)

V. ANALYSIS RESULTS

After making the final tuning choices, we performed the
coincidence analysis without time shifts for all three data

sets. No event triggers survived the coincidence andr-statistic
tests, so we have no candidate gravitational-wave signals.

Table III shows for each data set the rate of triggers, the
number of coincident events before and after ther-statistic
test, and the total amount of data analyzed after removing the
playground and accounting for the dead time of the TAMA ve-
toes. Also shown are the number of accidental coincidences
and the effective observation time from the time-shift exper-
iments, which provide our estimate of the background rates.
Finally, the upper limits on the rate of detectable gravitational-
wave bursts are shown.

As discussed in Section III D, our upper limits are obtained
using the Feldman-Cousins procedure [30]. This algorithm
compares the observed number of events to that expected from
the background. As a rule, for a fixed number of observed
events, the upper limit is stronger (lower) for higher back-
grounds. Since our backgrounds are too low to be measured
accurately (there are no surviving time-shifted coincidences
after ther-statistic), we conservatively assume zero back-
ground in calculating our upper limits. Since there are also
no surviving coincidences without time shifts, the rate limits
from the Feldman-Cousins procedure take on the simple form

Ri
90% =

2.44

Ti
(5.1)

whereTi is the observation time for a particular network com-
bination (see Table IV of [30] withb = 0, n = 0). This gives
the limits shown in Table III. Additionally, since all threedata
sets have essentially zero background, we can treat them col-
lectively as a single experiment by summing their observation
times and the number of detected events (which happens to be
zero):

Rcombined
90% =

2.44
∑

i Ti
(5.2)

The resulting upper limit of 0.12 detectable events per day at
90% confidence is the primary scientific result of this analysis.

By dividing the rate upper limits by the efficiency for a
given population of GWB sources, as in equation (3.2), we
obtain upper limits on the GWB rate as a function of the burst
amplitude. Averaging over the network combinations gives

Rcombined
90% (hrss) =

2.44
∑

i ǫi(hrss)Ti
(5.3)

For example, for our tuning population of isotropically dis-
tributed sources of sine-Gaussian GWBs, and averaging over
all f0 (i.e., using the efficiencies in Figure 7), one obtains the
rate-versus-strength upper limits shown in Figure 10. GWB
rates and amplitudes above a given curve are excluded by that
data set with at least 90% confidence.

A. Comparison to other searches

The LIGO-TAMA search for GWBs is one of several such
searches reported recently. Table IV shows the observation
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Data Set H1-H2-L1-T1 H1-H2-nL1-T1 H1-H2-L1-nT1 Combined

RH1 (s−1) 0.0157 0.0151 0.0137

RH2 (s−1) 0.0164 0.0183 0.0150

RL1 (s−1) 0.399 - 0.377

RT1 (s−1) 1.03 1.04 -

N 0/0 1/0 0/0 1/0

T (hr) 165.3 257.0 51.2 473.5

Nbck 31/0 57/0 0/0

Tbck (hr) 3.422×105 1.139×104 2.243×103

〈N〉 0.015/<0.0005 1.3/<0.03 <0.03/<0.03 <1.4/<0.05

R90% (day−1) 0.35 0.23 1.1 0.12

TABLE III: Results of the LIGO-TAMA analysis for each data set separately, and combined.RH1, etc., are the measured single-detector
trigger rates.N is the total number of coincidences before/after ther-statistic waveform consistency test.T is the total observation time
analyzed, after removal of the playground and veto dead times. Nbck andTbck are the corresponding summed numbers from the time-shift
experiments.〈N〉 is the expected number of accidental coincidences during the observation time. (ForNbck = 0, we estimate〈N〉 < T/Tbck.)
R90% is the resulting upper limit on the rate of detectable gravitational-wave events, at 90% confidence.

10
−20

10
−19

10
−18

10
−17

10
−1

10
0

10
1

Signal Amplitude (Hz −1/2)

90
%

 R
at

e 
U

pp
er

 L
im

it 
(d

ay
−1

)

H1−H2−L1−T1
H1−H2−nL1−T1
H1−H2−L1−nT1
Combined

FIG. 10: Rate-versus-strength upper limits from each LIGO-TAMA
data set, and combined, for the isotropic distribution of sources of
sine-Gaussian GWBs described in Section IV A. The region above
any curve is excluded by that experiment with at least 90% confi-
dence. These curves include the allowances for uncertainties in the
calibration and in the efficiencies discussed in Section IV C.

time, rate upper limit, and approximate frequency band for
LIGO-TAMA, the LIGO-only S2 search [16], the TAMA-
only DT9 search [17], and the IGEC search [7]. Our limit
of 0.12 events per day is the strongest limit yet placed on
gravitational-wave bursts by broadband detectors. Even so, it
is still approximately a factor of 30 larger than the IGEC limit,
which was derived from approximately two years of data from
a network of 5 resonant-mass detectors. Note however that the
broadband nature of the LIGO and TAMA detectors means
that they are sensitive to a wider class of signals than resonant-
mass detectors; the IGEC search is only sensitive to GWBs
with significant power at the resonant frequencies of all of the
operating detectors.

Network T (day) R90% (day−1) band (Hz)

LIGO-TAMA S2/DT8 19.7 0.12 700-2000

LIGO-only S2 10.0 0.26 100-1100

TAMA-only DT9 8.1 0.49 230-2500

IGEC 707.9 0.0041 694-930

TABLE IV: Observation times, rate upper limits, and frequency
bands for LIGO-TAMA and other recent burst searches [7, 16, 17].
The stated frequency range for the IGEC search is the range ofthe
resonant frequencies of the detectors used. The IGEC upper limit ap-
plies only to signals with significant power at the resonant frequen-
cies of all of the operating detectors.

Since our sine-Gaussian test waveforms are narrow-band
signals, we cannot compare directly our sensitivity to that
of the IGEC network. More concrete comparisons can be
made between the performance of the LIGO-TAMA network
and LIGO and TAMA individually, by considering the rate-
versus-strength upper limit forf0 = 849 Hz sine-Gaussians.
Figure 11 shows the upper limits for this waveform from the
LIGO-only S1 and S2 searches [16, 21], the TAMA DT9
search [17], and the present analysis. Compared to LIGO
alone, the much longer observation time afforded by joining
the LIGO and TAMA detectors allows the LIGO-TAMA net-
work to set stronger rate upper limits for amplitudes at which
both LIGO and TAMA are sensitive. The joint network also
enjoys a lower background rate from accidental coincidences,
particularly for the quadruple-coincidence network: of order
1/40 yr−1 for quadruple coincidence, versus of order 2 yr−1

for the LIGO-only S2 analysis. However, the band of good
sensitivity for LIGO-TAMA does not extend to low frequen-
cies, due to the poorer TAMA noise level there. The LIGO-
only analysis also has better sensitivity to weak signals, espe-
cially near the lower edge of our frequency band. Compared
to TAMA alone, the LIGO-TAMA network has better sensi-
tivity to weak signals because coincidence with LIGO lowers
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FIG. 11: Comparison of the rate-versus-strength upper limits for
f0 = 849 Hz sine-Gaussians from the combined LIGO-TAMA
data set (including systematic and statistical uncertainties) with those
from the LIGO-only S1 and S2 bursts searches [16, 21] and the
TAMA-only DT9 search [17]. The combined LIGO-TAMA network
has a superior rate upper limit for strong signals due to its larger
observation time, while the LIGO-only S2 network has bettersensi-
tivity to weak signals. The TAMA-only DT9 amplitude sensitivity is
limited by the high SNR threshold needed achieve a background rate
of order one event over the observation time. Note that the LIGO-
only S2 search had a nominal frequency range of 100-1100 Hz, while
the LIGO-TAMA search band is 700-2000 Hz.

the network background rate without requiring high thresh-
olds for trigger generation. For example, while the TAMA
noise levels were lower in DT9 than in DT8, the TAMA DT9
amplitude sensitivity is not as good as that of LIGO-TAMA
due to the need to use a very high SNR threshold –ρ0 = 104

– to reduce the TAMA-only background rate to of order one
event over the observation time.

VI. CONCLUSION

The LIGO and TAMA collaborations have completed their
first joint search for gravitational-wave bursts, using 473hr
of coincident data collected during early 2003. We looked
for millisecond-duration gravitational-wave bursts in the fre-
quency range 700-2000 Hz, where all four of the detectors
had comparable sensitivity. To maintain a low background,
we analyzed data only from periods when at least three inter-
ferometers (including the two LIGO-Hanford interferometers)
were operating, and we required candidate signals to be ob-
served simultaneously in all of the operating detectors. We
used coordinated injections of simulated gravitational-wave
signals to estimate the detection efficiency of our heteroge-
neous network. We matched the efficiency between detectors
to maximize the network sensitivity while limiting the back-
ground rate to less than 0.1 events expected over the entire
observation time. No gravitational-wave candidates were ob-
served, and we place an upper bound of 0.12 events per day on

the rate of detectable millisecond-duration gravitational-wave
bursts with at least 90% confidence. Simulations indicate that
our network has a detection efficiency of at least 50% (90%)
for narrow-band signals with root-sum-square strain ampli-
tude greater than approximately2 × 10−19 Hz−1/2 (10−18

Hz−1/2) in the frequency band 700-2000 Hz.
This analysis highlights both advantages and disadvan-

tages of joint coincidence searches compared to independent
searches by LIGO and TAMA. Together, the LIGO-TAMA
network has more than twice as much data with three or more
detectors in simultaneous operation than LIGO alone, leading
to stronger rate limits. We also enjoy a background rate of or-
der one event per 40 years (or lower) in quadruple-coincidence
operation. The lower background from coincidence also al-
lows the TAMA data to be analyzed with lower thresholds for
signal detection. These benefits come at some cost in detec-
tion efficiency and in bandwidth, particularly at low frequen-
cies. This is a result of requiring coincident detection by all
interferometers, in which case the network sensitivity is lim-
ited by the least sensitive detector at each frequency.

This analysis may serve as a prototype for more compre-
hensive collaborative searches in the future. One improve-
ment would be to expand the detector network. For exam-
ple, GEO, LIGO, and TAMA performed coincident data tak-
ing during Oct. 2003 - Jan. 2004; a GEO-LIGO-TAMA net-
work would contain 5 interferometers at four sites, with ex-
cellent sky coverage. Another improvement would be to im-
plement a fully coherent consistency test of coincident events,
including all of the detectors in the network. For example, the
Gursel-Tinto technique [15] would allow us to take advantage
of the different detector orientations to try to extract skydirec-
tion and waveform information from detected gravitational-
wave signals. It would also allow us to reject a coincidence if
no consistent sky direction or waveform could be determined
[36].
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