630 research outputs found

    Confabulation: damage to a specific inferior medial prefrontal system

    Get PDF
    Confabulation, the pathological production of false memories, occurs following a variety of aetiologies involving the frontal lobes, and is frequently held to be underpinned by combined memory and executive deficits. However, the critical frontal regions and specific cognitive deficits involved are unclear. Studies in amnesic patients have associated confabulation with damage to the orbital and ventromedial prefrontal cortex. However neuroimaging studies have associated memory control processes which are assumed to underlie confabulation with the right lateral prefrontal cortex. We used a confabulation battery to investigate the occurrence and localisation of confabulation in an unselected series of 38 patients with focal frontal lesions. 12 patients with posterior lesions and 50 healthy controls were included for comparison. Significantly higher levels of confabulation were found in the Frontal group, confirming previous reports. More detailed grouping according to lesion location within the frontal lobe revealed that patients with orbital, medial and left lateral damage confabulated in response to questions probing personal episodic memory. Patients with orbital, medial and right lateral damage confabulated in response to questions probing orientation to time. Performance-led analysis revealed that all patients who produced a total number of confabulations outside the normal range had a lesion affecting either the orbital region or inferior portion of the anterior cingulate. These data provide striking evidence that the critical deficit for confabulation has its anatomical location in the inferior medial frontal lobe. Performance on tests of memory and executive functioning showed considerable variability. Although a degree of memory impairment does seem necessary, performance on traditional executive tests is less helpful in explaining confabulation

    The middle house or the middle floor: Bisecting horizontal and vertical mental number lines in neglect

    Get PDF
    Abstract This study explores the processing of mental number lines and physical lines in five patients with left unilateral neglect. Three tasks were used: mental number bisection (‘report the middle number between two numbers’), physical line bisection (‘mark the middle of a line’), and a landmark task (‘is the mark on the line to the left/right or higher/lower than the middle of the line?’). We manipulated the number line orientation purely by task instruction: neglect patients were told that the number-pairs represented either houses on a street (horizontal condition) or floors in a building (vertical condition). We also manipulated physical line orientation for comparison. All five neglect patients showed a rightward bias for horizontally oriented physical and number lines (e.g. saying ‘five’ is the middle house number between ‘two’ and ‘six’). Only three of these patients also showed an upward bias for vertically oriented number lines. The remaining two patients did not show any bias in processing vertical lines. Our results suggest that: (1) horizontal and vertical neglect can associate or dissociate among different patients; (2) bisecting number lines operates on internal horizontal and vertical representations possibly analogous to horizontal and vertical physical lines; (3) at least partially independent mechanisms may be involved in processing horizontal and vertical number lines

    The influence of fluid intelligence, executive functions and premorbid intelligence on memory in frontal patients

    Get PDF
    It is commonly thought that memory deficits in frontal patients are a result of impairments in executive functions which impact upon storage and retrieval processes. Yet, few studies have specifically examined the relationship between memory performance and executive functions in frontal patients. Furthermore, the contribution of more general cognitive processes such as fluid intelligence and demographic factors such as age, education, and premorbid intelligence has not been considered. Our study examined the relationship between recall and recognition memory and performance on measures of fluid intelligence, executive functions and premorbid intelligence in 39 frontal patients and 46 healthy controls. Recall memory impairments in frontal patients were strongly correlated with fluid intelligence, executive functions and premorbid intelligence. These factors were all found to be independent predictors of recall performance, with fluid intelligence being the strongest predictor. In contrast, recognition memory impairments were not related to any of these factors. Furthermore, age and education were not significantly correlated with either recall or recognition memory measures. Our findings show that recall memory in frontal patients was related to fluid intelligence, executive functions and premorbid intelligence. In contrast, recognition memory was not. These findings suggest that recall and recognition memory deficits following frontal injury arise from separable cognitive factors. Recognition memory tests may be more useful when assessing memory functions in frontal patients

    Disturbi cognitivi nell'epilessia del lobo temporale in età evolutiva

    Get PDF
    Objectives. To describe the impact of childhood temporal lobe epilepsy (TLE) on cognitive functions. Material and methods. Nine patients with TLE aged 11-17 years and 18 healty controls were investigated with a comprehensive neuropsychological assessment. Results. The performance of children with TLE was significantly worse across language, verbal short term memory and semantic tests, compared with the controls. Verbal and non-verbal recall was also impaired. A supplementary investigation of recognition memory showed a selective impairment in topographical memory. Conclusions. In our patients, the episodic memory impairment is similar, although less severe, to that reported in developmental hippocampal amnesia. Nevertheless, in our patients there are also impairments in semantic memory and more general language disorders. These data suggest that in TLE patients there is a more general dysfunction of the medial temporal left functions

    2008 Statistics

    Full text link
    2008 Men\u27s Track and Field Statistics, George Fox College

    Cognitive dysfunction in patients with cerebral microbleeds on T2*-weighted gradient-echo MRI.

    No full text
    Gradient echo T2*-weighted MRI has high sensitivity in detecting cerebral microbleeds, which appear as small dot-like hypointense lesions. Microbleeds are strongly associated with intracerebral haemorrhage, hypertension, lacunar stroke and ischaemic small vessel disease, and have generated interest as a marker of bleeding-prone microangiopathy. Microbleeds have generally been considered to be clinically silent; however, since they are located in widespread cortical and basal ganglia regions and are histologically characterized by tissue damage, we hypothesized that they would cause cognitive dysfunction. We therefore studied patients with microbleeds (n = 25) and a non-microbleed control group (n = 30) matched for age, gender and intelligence quotient. To avoid the confounding effects of coexisting cerebrovascular disease, the groups were also matched for the extent of MRI-visible white matter changes of presumed ischaemic origin, location of cortical strokes, and for the proportion of patients with different stroke subtypes (including lacunar stroke). A battery of neuropsychological tests was used to assess current intellectual function, verbal and visual memory, naming and perceptual skills, speed and attention and executive function. Microbleeds were most common in the basal ganglia but were also found in frontal, parieto-occipital, temporal and infratentorial regions. There was a striking difference between the groups in the prevalence of executive dysfunction, which was present in 60% of microbleed patients compared with 30% of non-microbleed patients (P = 0.03). Logistic regression confirmed that microbleeds (but not white matter changes) were an independent predictor of executive impairment (adjusted odds ratio = 1.32, 95% confidence interval 1.01-1.70, P = 0.04). Patients with executive dysfunction had more microbleeds in the frontal region (mean count 1.54 versus 0.03; P = 0.002) and in the basal ganglia (mean 1.17 versus 0.32; P = 0.048). There was a modest correlation between the number of microbleeds and the number of cognitive domains impaired (r = 0.44, P = 0.03). This study provides novel evidence that microbleeds are associated with cognitive dysfunction, independent of the extent of white matter changes of presumed ischaemic origin, or the presence of ischaemic stroke. The striking effect of microbleeds on executive dysfunction is likely to result from associated tissue damage in the frontal lobes and basal ganglia. These findings have implications for the diagnosis of stroke patients with cognitive impairment, and for the appropriate use of antihypertensive and antiplatelet treatments in these patients

    A longitudinal investigation into cognition and disease progression in spinocerebellar ataxia types 1, 2, 3, 6, and 7

    Get PDF
    The natural history of clinical symptoms in the spinocerebellar ataxias (SCA)s has been well characterised. However there is little longitudinal data comparing cognitive changes in the most common SCA subtypes over time. The present study provides a preliminary longitudinal characterisation of the clinical and cognitive profiles in patients with SCA1, SCA2, SCA3, SCA6 and SCA7, with the aim of elucidating the role of the cerebellum in cognition

    Modulating memory performance in healthy subjects with Trancranial Direct Current Stimulation over the right dorsolateral prefrontal cortex

    Get PDF
    Objective The role of the Dorsolateral Prefrontal Cortex (DLPFC) in recognition memory has been well documented in lesion, neuroimaging and repetitive Transcranial Magnetic Stimulation (rTMS) studies. The aim of the present study was to investigate the effects of transcranial Direct Current Stimulation (tDCS) over the left and the right DLPFC during the delay interval of a non-verbal recognition memory task. Method 36 right-handed young healthy subjects participated in the study. The experimental task was an Italian version of Recognition Memory Test for unknown faces. Study included two experiments: in a first experiment, each subject underwent one session of sham tDCS and one session of left or right cathodal tDCS; in a second experiment each subject underwent one session of sham tDCS and one session of left or right anodal tDCS. Results Cathodal tDCS over the right DLPFC significantly improved non verbal recognition memory performance, while cathodal tDCS over the left DLPFC had no effect. Anodal tDCS of both the left and right DLPFC did not modify non verbal recognition memory performance. Conclusion Complementing the majority of previous studies, reporting long term memory facilitations following left prefrontal anodal tDCS, the present findings show that cathodal tDCS of the right DLPFC can also improve recognition memory in healthy subjects

    Is the Brixton Spatial Anticipation Test sensitive to frontal dysfunction? Evidence from patients with frontal and posterior lesions

    Get PDF
    INTRODUCTION: The Brixton Spatial Anticipation Test is a widely used neuropsychological test, thought to assess executive functions and to be sensitive to frontal lobe lesions. Our aim was to investigate Brixton performance in patients with focal frontal or posterior lesions and healthy controls. METHOD: We compared performance on the Brixton in a sample of 24 frontal patients, 18 posterior patients and 22 healthy controls. Both overall performance (total number of errors) and error types were analyzed. RESULTS: We found no significant differences between frontal and posterior patients and healthy controls in overall Brixton performance. Moreover, our error analysis showed no difference between frontal patients, posterior patients and healthy controls. The only exception was that posterior patients had a greater tendency to guess and make more errors when following specific rules than healthy controls but this was no longer significant once fluid intelligence was controlled for. We also found no significant difference between the performance of patients with left lateral (n = 11), right lateral (n = 10) or superior medial (n = 18) frontal lesions and healthy controls. CONCLUSIONS: The Brixton test is not sensitive to frontal lobe dysfunction. It is likely that the test draws on a range of cognitive abilities not specific to frontal lobe lesions. Hence, caution should be taken when drawing conclusions about its neural substrates
    corecore