46 research outputs found

    Smoking reduces surfactant protein D and phospholipids in patients with and without chronic obstructive pulmonary disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pulmonary surfactant D (SP-D) has important regulatory functions for innate immunity and has been implicated as a biomarker for chronic obstructive pulmonary disease (COPD). We hypothesized that COPD patients would have reduced bronchoalveolar lavage (BAL) fluid SP-D levels compared to healthy smoking and non-smoking controls.</p> <p>Methods</p> <p>BAL SP-D and phospholipids were quantified and corrected for dilution in 110 subjects (65 healthy never smokers, 23 smokers with normal spirometry, and 22 smokers with COPD).</p> <p>Results</p> <p>BAL SP-D was highest in never smokers (mean 51.9 μg/mL ± 7.1 μg/mL standard error) compared to both smokers with normal spirometry (16.0 μg/mL ± 11.8 μg/mL) and subjects with COPD (19.1 μg/mL ± 12.9 μg/mL; P < 0.0001). Among smokers with COPD, BAL SP-D correlated significantly with FEV<sub>1</sub>% predicted (R = 0.43; P < 0.05); however, the strongest predictor of BAL SP-D was smoking status. BAL SP-D levels were lowest in current smokers (12.8 μg/mL ± 11.0 μg/mL), intermediate in former smokers (25.2 μg/mL ± 14.2 μg/mL; P < 0.008), and highest in never smokers. BAL phospholipids were also lowest in current smokers (6.5 nmol ± 1.5 nmol), intermediate in former smokers (13.1 nmol ± 2.1 nmol), and highest in never smokers (14.8 nmol ± 1.1 nmol; P < 0.0001).</p> <p>Conclusions</p> <p>These data suggest that smokers, and especially current smokers, exhibit significantly reduced BAL SP-D and phospholipids compared to nonsmokers. Our findings may help better explain the mechanism that leads to the rapid progression of disease and increased incidence of infection in smokers.</p

    Moving to capture children’s attention: developing a methodology for measuring visuomotor attention

    Get PDF
    Attention underpins many activities integral to a child’s development. However, methodological limitations currently make large-scale assessment of children’s attentional skill impractical, costly and lacking in ecological validity. Consequently we developed a measure of ‘Visual Motor Attention’ (VMA) - a construct defined as the ability to sustain and adapt visuomotor behaviour in response to task-relevant visual information. In a series of experiments, we evaluated the capability of our method to measure attentional processes and their contributions in guiding visuomotor behaviour. Experiment 1 established the method’s core features (ability to track stimuli moving on a tablet-computer screen with a hand-held stylus) and demonstrated its sensitivity to principled manipulations in adults’ attentional load. Experiment 2 standardised a format suitable for use with children and showed construct validity by capturing developmental changes in executive attention processes. Experiment 3 tested the hypothesis that children with and without coordination difficulties would show qualitatively different response patterns, finding an interaction between the cognitive and motor factors underpinning responses. Experiment 4 identified associations between VMA performance and existing standardised attention assessments and thereby confirmed convergent validity. These results establish a novel approach to measuring childhood attention that can produce meaningful functional assessments that capture how attention operates in an ecologically valid context (i.e. attention's specific contribution to visuomanual action)

    Short-Lived Trace Gases in the Surface Ocean and the Atmosphere

    Get PDF
    The two-way exchange of trace gases between the ocean and the atmosphere is important for both the chemistry and physics of the atmosphere and the biogeochemistry of the oceans, including the global cycling of elements. Here we review these exchanges and their importance for a range of gases whose lifetimes are generally short compared to the main greenhouse gases and which are, in most cases, more reactive than them. Gases considered include sulphur and related compounds, organohalogens, non-methane hydrocarbons, ozone, ammonia and related compounds, hydrogen and carbon monoxide. Finally, we stress the interactivity of the system, the importance of process understanding for modeling, the need for more extensive field measurements and their better seasonal coverage, the importance of inter-calibration exercises and finally the need to show the importance of air-sea exchanges for global cycling and how the field fits into the broader context of Earth System Science

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Hypoxia signaling pathways in cancer metabolism: the importance of co-selecting interconnected physiological pathways

    Full text link
    corecore