275 research outputs found

    CACNA1C hypermethylation is associated with bipolar disorder

    Get PDF
    The CACNA1C gene, encoding a subunit of the L-type voltage-gated calcium channel is one of the best-supported susceptibility genes for bipolar disorder (BD). Genome-wide association studies have identified a cluster of non-coding single-nucleotide polymorphisms (SNPs) in intron 3 to be highly associated with BD and schizophrenia. The mechanism by which these SNPs confer risk of BD appears to be through an altered regulation of CACNA1C expression. The role of CACNA1C DNA methylation in BD has not yet been addressed. The aim of this study was to investigate if CACNA1C DNA methylation is altered in BD. First, the methylation status of five CpG islands (CGIs) across CACNA1C in blood from BD subjects (n=40) and healthy controls (n=38) was determined. Four islands were almost completely methylated or completely unmethylated, while one island (CGI 3) in intron 3 displayed intermediate methylation levels. In the main analysis, the methylation status of CGI 3 was analyzed in a larger sample of BD subjects (n=582) and control individuals (n=319). Out of six CpG sites that were investigated, five sites showed significant hypermethylation in cases (lowest P=1.16 × 10(-7) for CpG35). Nearby SNPs were found to influence the methylation level, and we identified rs2238056 in intron 3 as the strongest methylation quantitative trait locus (P=2.6 × 10(-7)) for CpG35. In addition, we found an increased methylation in females, and no difference between bipolar I and II. In conclusion, we find that CACNA1C methylation is associated with BD and suggest that the regulatory effect of the non-coding risk variants involves a shift in DNA methylation

    Whole-exome sequencing of individuals from an isolated population implicates rare risk variants in bipolar disorder

    Get PDF
    Bipolar disorder affects about 1% of the world's population, and its estimated heritability is about 75%. Only few whole genome or whole-exome sequencing studies in bipolar disorder have been reported, and no rare coding variants have yet been robustly identified. The use of isolated populations might help finding variants with a recent origin, more likely to have drifted to higher frequency by chance. Following this approach, we investigated 28 bipolar cases and 214 controls from the Faroe Islands by whole exome sequencing, and the results were followed-up in a British sample of 2025 cases and 1358 controls. Seventeen variants in 16 genes in the single-variant analysis, and 3 genes in the gene-based statistics surpassed exome-wide significance in the discovery phase. The discovery findings were supported by enrichment analysis of common variants from genome-wide association studies (GWAS) data and interrogation of protein-protein interaction networks. The replication in the British sample confirmed the association with NOS1 (missense variant rs79487279) and NCL (gene-based test). A number of variants from the discovery set were not present in the replication sample, including a novel PITPNM2 missense variant, which is located in a highly significant schizophrenia GWAS locus. Likewise, PIK3C2A identified in the gene-based analysis is located in a combined bipolar and schizophrenia GWAS locus. Our results show support both for existing findings in the literature, as well as for new risk genes, and identify rare variants that might provide additional information on the underlying biology of bipolar disorder

    Spatially and Financially Explicit Population Viability Analysis of Maculinea alcon in The Netherlands

    Get PDF
    Background The conservation of species structured in metapopulations involves an important dilemma of resource allocation: should investments be directed at restoring/enlarging habitat patches or increasing connectivity. This is still an open question for Maculinea species despite they are among the best studied and emblematic butterfly species, because none of the population dynamics models developed so far included dispersal. Methodology/Principal Findings We developed the first spatially and financially explicit Population Viability Analysis model for Maculinea alcon, using field data from The Netherlands. Implemented using the RAMAS/GIS platform, the model incorporated both local (contest density dependence, environmental and demographic stochasticities), and regional population dynamics (dispersal rates between habitat patches). We selected four habitat patch networks, contrasting in several basic features (number of habitat patches, their quality, connectivity, and occupancy rate) to test how these features are affecting the ability to enhance population viability of four basic management options, designed to incur the same costs: habitat enlargement, habitat quality improvement, creation of new stepping stone habitat patches, and reintroduction of captive-reared butterflies. The PVA model was validated by the close match between its predictions and independent field observations on the patch occupancy pattern. The four patch networks differed in their sensitivity to model parameters, as well as in the ranking of management options. Overall, the best cost-effective option was enlargement of existing habitat patches, followed by either habitat quality improvement or creation of stepping stones depending on the network features. Reintroduction was predicted to generally be inefficient, except in one specific patch network. Conclusions/Significance Our results underline the importance of spatial and regional aspects (dispersal and connectivity) in determining the impact of conservation actions, even for a species previously considered as sedentary. They also illustrate that failure to account for the cost of management scenarios can lead to very different conclusions

    A comparison of SNP and STR loci for delineating population structure and performing individual genetic assignment

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Technological advances have lead to the rapid increase in availability of single nucleotide polymorphisms (SNPs) in a range of organisms, and there is a general optimism that SNPs will become the marker of choice for a range of evolutionary applications. Here, comparisons between 300 polymorphic SNPs and 14 short tandem repeats (STRs) were conducted on a data set consisting of approximately 500 Atlantic salmon arranged in 10 samples/populations.</p> <p>Results</p> <p>Global F<sub>ST </sub>ranged from 0.033-0.115 and -0.002-0.316 for the 14 STR and 300 SNP loci respectively. Global F<sub>ST </sub>was similar among 28 linkage groups when averaging data from mapped SNPs. With the exception of selecting a panel of SNPs taking the locus displaying the highest global F<sub>ST </sub>for each of the 28 linkage groups, which inflated estimation of genetic differentiation among the samples, inferred genetic relationships were highly similar between SNP and STR data sets and variants thereof. The best 15 SNPs (30 alleles) gave a similar level of self-assignment to the best 4 STR loci (83 alleles), however, addition of further STR loci did not lead to a notable increase assignment whereas addition of up to 100 SNP loci increased assignment.</p> <p>Conclusion</p> <p>Whilst the optimal combinations of SNPs identified in this study are linked to the samples from which they were selected, this study demonstrates that identification of highly informative SNP loci from larger panels will provide researchers with a powerful approach to delineate genetic relationships at the individual and population levels.</p

    Measurement of the cross-section of high transverse momentum vector bosons reconstructed as single jets and studies of jet substructure in pp collisions at √s = 7 TeV with the ATLAS detector

    Get PDF
    This paper presents a measurement of the cross-section for high transverse momentum W and Z bosons produced in pp collisions and decaying to all-hadronic final states. The data used in the analysis were recorded by the ATLAS detector at the CERN Large Hadron Collider at a centre-of-mass energy of √s = 7 TeV;{\rm Te}{\rm V}andcorrespondtoanintegratedluminosityof and correspond to an integrated luminosity of 4.6\;{\rm f}{{{\rm b}}^{-1}}.ThemeasurementisperformedbyreconstructingtheboostedWorZbosonsinsinglejets.ThereconstructedjetmassisusedtoidentifytheWandZbosons,andajetsubstructuremethodbasedonenergyclusterinformationinthejetcentreofmassframeisusedtosuppressthelargemultijetbackground.ThecrosssectionforeventswithahadronicallydecayingWorZboson,withtransversemomentum. The measurement is performed by reconstructing the boosted W or Z bosons in single jets. The reconstructed jet mass is used to identify the W and Z bosons, and a jet substructure method based on energy cluster information in the jet centre-of-mass frame is used to suppress the large multi-jet background. The cross-section for events with a hadronically decaying W or Z boson, with transverse momentum {{p}_{{\rm T}}}\gt 320\;{\rm Ge}{\rm V}andpseudorapidity and pseudorapidity |\eta |\lt 1.9,ismeasuredtobe, is measured to be {{\sigma }_{W+Z}}=8.5\pm 1.7$ pb and is compared to next-to-leading-order calculations. The selected events are further used to study jet grooming techniques

    Search for pair-produced long-lived neutral particles decaying to jets in the ATLAS hadronic calorimeter in ppcollisions at √s=8TeV

    Get PDF
    The ATLAS detector at the Large Hadron Collider at CERN is used to search for the decay of a scalar boson to a pair of long-lived particles, neutral under the Standard Model gauge group, in 20.3fb−1of data collected in proton–proton collisions at √s=8TeV. This search is sensitive to long-lived particles that decay to Standard Model particles producing jets at the outer edge of the ATLAS electromagnetic calorimeter or inside the hadronic calorimeter. No significant excess of events is observed. Limits are reported on the product of the scalar boson production cross section times branching ratio into long-lived neutral particles as a function of the proper lifetime of the particles. Limits are reported for boson masses from 100 GeVto 900 GeV, and a long-lived neutral particle mass from 10 GeVto 150 GeV

    Investigating the Causal Relationship of C-Reactive Protein with 32 Complex Somatic and Psychiatric Outcomes: A Large-Scale Cross-Consortium Mendelian Randomization Study

    Get PDF
    BACKGROUND: C-reactive protein (CRP) is associated with immune, cardiometabolic, and psychiatric traits and diseases. Yet it is inconclusive whether these associations are causal. METHODS AND FINDINGS: We performed Mendelian randomization (MR) analyses using two genetic risk scores (GRSs) as instrumental variables (IVs). The first GRS consisted of four single nucleotide polymorphisms (SNPs) in the CRP gene (GRSCRP), and the second consisted of 18 SNPs that were significantly associated with CRP levels in the largest genome-wide association study (GWAS) to date (GRSGWAS). To optimize power, we used summary statistics from GWAS consortia and tested the association of these two GRSs with 32 complex somatic and psychiatric outcomes, with up to 123,865 participants per outcome from populations of European ancestry. We performed heterogeneity tests to disentangle the pleiotropic effect of IVs. A Bonferroni-corrected significance level of less than 0.0016 was considered statistically significant. An observed p-value equal to or less than 0.05 was considered nominally significant evidence for a potential causal association, yet to be confirmed. The strengths (F-statistics) of the IVs were 31.92-3,761.29 and 82.32-9,403.21 for GRSCRP and GRSGWAS, respectively. CRP GRSGWAS showed a statistically significant protective relationship of a 10% genetically elevated CRP level with the risk of schizophrenia (odds ratio [OR] 0.86 [95% CI 0.79-0.94]; p < 0.001). We validated this finding with individual-level genotype data from the schizophrenia GWAS (OR 0.96 [95% CI 0.94-0.98]; p < 1.72 × 10-6). Further, we found that a standardized CRP polygenic risk score (CRPPRS) at p-value thresholds of 1 × 10-4, 0.001, 0.01, 0.05, and 0.1 using individual-level data also showed a protective effect (OR < 1.00) against schizophrenia; the first CRPPRS (built of SNPs with p < 1 × 10-4) showed a statistically significant (p < 2.45 × 10-4) protective effect with an OR of 0.97 (95% CI 0.95-0.99). The CRP GRSGWAS showed that a 10% increase in genetically determined CRP level was significantly associated with coronary artery disease (OR 0.88 [95% CI 0.84-0.94]; p < 2.4 × 10-5) and was nominally associated with the risk of inflammatory bowel disease (OR 0.85 [95% CI 0.74-0.98]; p < 0.03), Crohn disease (OR 0.81 [95% CI 0.70-0.94]; p < 0.005), psoriatic arthritis (OR 1.36 [95% CI 1.00-1.84]; p < 0.049), knee osteoarthritis (OR 1.17 [95% CI 1.01-1.36]; p < 0.04), and bipolar disorder (OR 1.21 [95% CI 1.05-1.40]; p < 0.007) and with an increase of 0.72 (95% CI 0.11-1.34; p < 0.02) mm Hg in systolic blood pressure, 0.45 (95% CI 0.06-0.84; p < 0.02) mm Hg in diastolic blood pressure, 0.01 ml/min/1.73 m2 (95% CI 0.003-0.02; p < 0.005) in estimated glomerular filtration rate from serum creatinine, 0.01 g/dl (95% CI 0.0004-0.02; p < 0.04) in serum albumin level, and 0.03 g/dl (95% CI 0.008-0.05; p < 0.009) in serum protein level. However, after adjustment for heterogeneity, neither GRS showed a significant effect of CRP level (at p < 0.0016) on any of these outcomes, including coronary artery disease, nor on the other 20 complex outcomes studied. Our study has two potential limitations: the limited variance explained by our genetic instruments modeling CRP levels in blood and the unobserved bias introduced by the use of summary statistics in our MR analyses. CONCLUSIONS: Genetically elevated CRP levels showed a significant potentially protective causal relationship with risk of schizophrenia. We observed nominal evidence at an observed p < 0.05 using either GRSCRP or GRSGWAS-with persistence after correction for heterogeneity-for a causal relationship of elevated CRP levels with psoriatic osteoarthritis, rheumatoid arthritis, knee osteoarthritis, systolic blood pressure, diastolic blood pressure, serum albumin, and bipolar disorder. These associations remain yet to be confirmed. We cannot verify any causal effect of CRP level on any of the other common somatic and neuropsychiatric outcomes investigated in the present study. This implies that interventions that lower CRP level are unlikely to result in decreased risk for the majority of common complex outcomes

    Association between funding source, methodological quality and research outcomes in randomized controlled trials of synbiotics, probiotics and prebiotics added to infant formula: A Systematic Review

    Get PDF

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at root s = 8 TeV with the ATLAS detector (vol 75, 299, 2015)

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √s=8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT&gt;120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between EmissT&gt;150 GeV and EmissT&gt;700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presented
    corecore