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Abstract
Based on the discovery by the Resilience Project (Chen R. et al. Nat Biotechnol 34:531–538, 2016) of rare variants that
confer resistance to Mendelian disease, and protective alleles for some complex diseases, we posited the existence of genetic
variants that promote resilience to highly heritable polygenic disorders1,0 such as schizophrenia. Resilience has been
traditionally viewed as a psychological construct, although our use of the term resilience refers to a different construct that
directly relates to the Resilience Project, namely: heritable variation that promotes resistance to disease by reducing the
penetrance of risk loci, wherein resilience and risk loci operate orthogonal to one another. In this study, we established a
procedure to identify unaffected individuals with relatively high polygenic risk for schizophrenia, and contrasted them with
risk-matched schizophrenia cases to generate the first known “polygenic resilience score” that represents the additive
contributions to SZ resistance by variants that are distinct from risk loci. The resilience score was derived from data
compiled by the Psychiatric Genomics Consortium, and replicated in three independent samples. This work establishes a
generalizable framework for finding resilience variants for any complex, heritable disorder.

Introduction

Our progress in understanding the genetic basis for mental
disorders has accelerated over the last decade due to improved
methods and the increased sample sizes collated by the Psy-
chiatric Genomics Consortium (PGC) [1]. Dissecting the
genetic risk for these disorders is, in itself, extraordinarily
valuable for guiding mechanistic studies, developing better

diagnostics, and formulating therapeutics. But an under-
standing of risk states also has the benefit of allowing research
on resilience. Knowing how some people avoid illness despite
being at elevated risk should shed light on novel avenues for
early intervention or treatment that could not be illuminated
by studying affected individuals alone.

The psychological, sociological, and biological constructs
of resilience, commonly defined as positive adaptation to
extreme adversity [2], have been studied extensively. This
paradigm of resilience focuses on “active coping” mechan-
isms; e.g., high emotionality, flexibility of thinking, having
social support, and a sense of purpose, among others [3]. The
way we are conceptualizing resilience differs from the tradi-
tional view in that we attribute resilience in part to heritable
variation that increases resistance to disease, which closely
relates to the paradigm that was invoked by the Resilience
Project [4]. This new paradigm of genetic resilience focuses
on the discovery of genetic variants that help unaffected
individuals cope with a relatively large genetic burden of
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disease-associated variants. Our model has two postulates: (1)
genetic resilience is in part mediated by common genetic
variants that act by lowering the penetrance of risk variants,
and (2) resilience variants are orthogonal to risk loci. The
meaning of the second postulate is that resilience as defined
here is not simply the inverse of risk. As opposed to “pro-
tective” variants, which are simply the alternate alleles at each
risk-associated locus that have higher frequency in controls
than cases, resilience alleles are hypothesized to ameliorate
the effects of the risk loci and reduce the likelihood of the
disorder. Research on the genetic basis of resilience (i.e.,
resistance to onset of illness) is contingent upon and neces-
sarily lags behind the discovery of bona fide risk states. For
schizophrenia (SZ), the Psychiatric Genomic Consortium
(PGC) has identified a “polygenic risk score” that accounts for
~20% of the heritability on the observed scale (or ~6–7% on
the liability scale) in risk through the additive effects of
thousands of common variants [5, 6]. The reliability of this
risk score continues to increase as additional samples con-
tribute to its derivation; however, the genetic variance
accounted for by additive effects of individual alleles appears
to have recently reached an asymptote [7]. With the allelic-
additive common-variant landscape of SZ coming into view,
we have arrived at a point where a systematic and risk-
informed study of the genetic basis for resilience to SZ is both
possible and warranted, capitalizing on this estimate of
polygenic risk.

The pursuit of genetic resilience factors for complex
neuropsychiatric disorders is nascent, but not unprece-
dented. For example, the APOE ε2 allele is a well-known
protective factor for Alzheimer’s disease that has been
studied for its effects on biological and psychological fea-
tures that may insulate carriers from the risk for the dis-
order. Results from prospective studies of psychiatric
disorders related to trauma exposure, such as post-traumatic
stress disorder (PTSD) in U.S. Marines who experienced
extreme combat stress, suggest that genetic resilience fac-
tors may mitigate environmental vulnerability to mental
illness [8]. Furthermore, studies of genetically modified
mice shed light on promising candidate genes involved in
glutamatergic synaptic transmission that increase resilience
to phenotypes related to SZ [9]. The first bona fide study of
genetic resilience was published by Chen et al. [4], which
focused on rare diseases that manifest in childhood, and
emerged from the Resilience Project undertaken by Mount
Sinai and Sage Bionetworks [4]. Although our study is
completely separate from the work by the Resilience Pro-
ject, we consider both branches of work to parallel one
another. In the Chen et al. [4], study, nearly 600,000 healthy
adults were surveyed for highly penetrant mutations asso-
ciated with Mendelian diseases that typically manifest
during childhood (i.e., c.1558 G > T;p.V520F [cystic fibro-
sis], c.964-1 G > C [Smith-Lemil-Optiz syndrome], c.2204

+ 6 T > T [Familial dysautonomia], etc.) [4]. The results
from the Chen et al. [4] study suggest that a small number
of individuals (~0.0022%) are genetically resilient to rare
and devastating forms of childhood disease . Their study
demonstrates that genetic resilience is an important avenue
for understanding disease etiology. Investigating genetic
and environmental factors that counteract inherited or
exposed sources of adversity may help illuminate mechan-
isms that can be modulated to divert or reverse pathophy-
siological processes.

Here we present a general framework for identifying
common variants that promote genetic resilience and for
computing a “polygenic resilience score” that moderates the
penetrance of known genetic risk factors. This is a proof-of-
concept study that has the potential to increase under-
standing about the resilience to complex polygenic dis-
orders. In essence, the strategy is to identify unaffected
individuals at the highest levels of genetic risk, match them
to affected individuals at equivalent levels of risk, and
contrast these two subgroups to find residual variation
associated with resilience. We present the results of
applying this method in the largest available sample of SZ
from the PGC and in three independent replication samples.
We also describe general principles, specific parameters,
limitations, and future applications of the approach, which
may be useful for studying resilience to any heritable,
complex, polygenic disorder.

Methods

Our approach to derive polygenic resilience scores for SZ is
presented schematically in Fig. 1. Supplementary Table 1
outlines decision points that occurred in our analysis and
parameters used at each point, including steps for truncating
samples and variants for the GWAS and deriving an
informative SNP set for resilience scoring. Wherever pos-
sible, we adhered to the precedent set by the PGC-SZ
Working Group [5].

Description of case–control GWAS samples

A description of sample ascertainment procedures used in
each study is available in the supplementary text published
by the PGC-SZ Working Group [5]. All subjects were
confirmed to be independent based on relatedness tests
using directly genotyped SNPs. Cases had a clinical diag-
nosis of SZ-spectrum disorders or SZ based on Diagnostic
and Statistical Manual for Mental Disorder (DSM)-Version
IV or International Classification of Diseases (ICD), 10th
revision. Control ascertainment varied across studies. Our
study inherited the same issues that the PGC-SZ faced in
that some of the studies comprised control sets that were not
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screened for SZ, which to the best of our knowledge
included the Gottingen Research Association for Schizo-
phrenia (GRAS, controls n= 1232) and the Icelandic
deCODE Genetics, Inc. sample which served as an out-of-
sample replication set (controls n= 138,761). If there hap-
pen to be controls affected with SZ in our discovery sample
(unlikely to be a large number as population prevalence of
SZ is ~1%), then the loss of power potentially incurred in
our analysis should be proportional to published GWAS by
the PGC, which in that study was deemed reasonable [5].

Meta-analysis of 51 GWASs in PGC2-SZ

We obtained GWAS summary statistics per study for the
same 45 European-ancestry case–control studies, three East
Asian-ancestry case–control studies, and three European

trio-based studies assembled by the PGC Schizophrenia
Working Group for their published wave 2 data set (PGC2-
SZ) [5]. We then meta-analyzed single-variant association
results genome-wide using inverse-variance fixed-effect
summary statistics for these 51 studies using the inverse-
variance fixed-effect method in the software METAL [10].

LD-clumped SNPs and weights for risk scoring

We obtained from the PGC-SZ a list of 103,129 linkage-
disequilibrium (LD)-independent SNPs and effect-size
weights derived from the 51-study GWAS meta-analysis
of SZ [5], along with imputed GWAS data for 45 of the
51 studies analyzed by Ripke et al. [5] (excluding six stu-
dies privately owned by pharmaceutical companies and
unavailable to us for secondary analysis: four Johnson &

Fig. 1 An Illustration of our method for deriving polygenic resilience scores for a complex disorder
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Johnson and Roche samples, the Pfizer sample, and the Eli
Lilly sample).

Identifying subjects with high levels of polygenic
risk

The variance in SZ explained by polygenic risk score (PRS)
was maximized at a p-value bin of p < 0.05 [5], thus we
used that threshold for selecting risk alleles for our PRS
analysis. PRS were standardized using z-score scaling
within each study. Subjects were then ranked by PRS and a
percentile-based threshold was used to identify the highest-
risk controls, i.e., “resilient” controls, along with cases with
similarly high PRS. We set an arbitrary threshold at the 90th
percentile of PRS in controls, and called controls above that
threshold ‘resilient’ (different thresholds could be chosen).
SZ cases whose PRS was between the 90th percentile for
controls and the maximum PRS for controls were retained
as the comparison group (Fig. 1). This method produced
3786 high-risk resilient controls (includes 83 pseudo-
controls from trio studies) and 18,619 equal-risk cases
(includes 494 cases from trio studies) for analysis. The total
number of cases and controls retained per study after risk
score matching is provided in Supplementary Table 2.

Ripke et al., reported that subjects in the highest PRS
decile exhibit an increased risk for SZ (OR= 8–20) com-
pared with the baseline rate of SZ in the lowest PRS decile
[5], which is on-par with the estimated increase in risk for
SZ among persons with affected first-degree relatives [11].
Building on these findings, Supplementary Table 3 shows
that the population in the upper 10th percentile of PRS (who
were included in our analysis) have an absolute risk of 40%
and an increase in relative risk of 1.91 compared with all
subjects above the lowest 10th percentile of PRS, which is
similar to the relative increase in risk for those with an
affected aunt or uncle [11].

Derivation of polygenic resilience scores

Marginal SNP effects on resilience were computed using
logistic regression models with Plink v1.9 [12] including
adjustment for four principal components derived from
autosome-wide SNP data that were significantly different
between high-risk controls and equal-risk cases at a sig-
nificance threshold of p < 0.1 to correct for population
stratification (Supplementary Table 4). Any variant that
showed an association with SZ risk from our meta-analysis
of the 51 PGC2-SZ studies at a p < 0.05, or variants that
were in LD with risk variants (at a R2 > 0.2 in a 1 megabase
window), were discarded from this GWAS of resilience as a
conservative measure, to avoid re-discovering risk variants
and to ensure that any polygenic resilience score derived
from our analysis was independent of the polygenic risk

score used to stratify the samples. Our choice of threshold
for pruning away SNPs in LD was used by the PGC and
others [13–15]. We considered setting a stricter threshold of
R2 ≤ 0.0, but this would have removed almost the entire
genome and left only six variants for evaluation. Marginal
SNP effects were obtained per study, and then pooled using
inverse-variance fixed effect meta-analysis [10] to arrive at
a final GWAS summary statistic per SNP.

Generating a polygenic score formula for resilience was
done in a series of steps. Clumping the GWAS summary
statistics output (Plink command: --clump-kb 500 --clump-r2
0.2 --clump-p1 1.0 --clump-p2 1.0) was performed using a
reference panel that represents the predominant ancestry
found in the GWAS sample (i.e., 1000 Genomes European
phase 1 version 3, n= 379). We removed variants according
to the following exclusion criteria referenced by the PGC-SZ
working group in ref. [5] to retain an informative SNP set for
polygenic resilience scoring: (i) variants in the MHC region
(chr6:25 Mb-34 Mb), (ii) variants in the chromosome 8
inversion region (chr8:7Mb–14Mb), (iii) variants with an
imputation quality score <0.9, and (iv) variants that are
strand-ambiguous (AT/CG genotypes) or were small inser-
tions/deletions. In addition, we removed variants with a minor
allele frequency <0.05 and variants present in 10 or fewer
studies. A total of 80,822 LD-independent SNPs associated
with resilience to SZ were available for inclusion in calcu-
lating “resilience scores” in our training and test sets.

Resilience scores were determined by counting the
number of protective alleles for sets of variants defined by
p-value cutoffs (p < 0.0001, <0.001, <0.01, <0.05, <0.1,
<0.2, <0.3, <0.5, <0.7, <1.0) and multiplying allele counts
by the natural logarithm of the resilience odds ratio for each
variant. We adopted a method used by the PGC [5] to
estimate the amount of variance in resilience status that can
be attributed to resilience scores. The approach is a two-
model regression. In the first regression, resilience scores
were specified as a predictor variable to estimate the odds of
being a high-risk resilient control versus a matched-risk
case (treated as the reference) per standard unit increase in
resilience score. Four principal components derived from
genome-wide SNP data that were significantly different
between high-risk controls and high-risk cases were inclu-
ded in this regression as covariates to control for population
stratification. A second logistic regression model was fit to
estimate the amount of additive variance that the four
principal component covariates that were specified in the
first model contributed to resilience status. The variance in
resilience status explained by each model was (based on
Nagelkerke’s pseudo-R2) was calculated using the R pack-
age fmsb (version 0.6.1). We calculated the difference in R2

values between in the two models, yielding a value of R2

that was attribute to the amount of variance in resilience
status explained by resilience scores.

J. L. Hess et al.



Correlation and interaction analyses of risk and
resilience scores

We calculated Pearson’s correlation coefficients for risk and
resilience scores in four separate groups: (1) SZ cases, (2)
controls, (3) subjects with low-risk scores for SZ grouped
by case–control status, and (4) and subjects with high-risk
scores grouped by case–control status. Ultra-high-risk cases
were excluded from the analysis (i.e., SZ cases with a risk
score exceeding the maximum risk score of controls) as
they lacked a matching set of controls. In addition, we
performed a logistic regression analysis using all PGC
samples (excluding ultra-high-risk cases) to test for a non-
linear effect of risk and resilience scores on case–control
status. Subjects were then split into deciles based on risk
score. With logistic regressions, we computed the odds of a
being a case between the bottom decile compared with each
of the other deciles, as well as comparing the estimate the
change in odds of being a control versus a case within each
decile based on the unit increase in resilience score. The top
10 principal components for ancestry were included as
covariates in the regression models.

Replication

We had direct access to imputed GWAS data for two
independent studies that were withheld entirely from all
discovery analyses and used exclusively in our replication
analysis (i.e., the Molecular Genetics of Schizophrenia
(MGS), and the Danish iPSYCH study) along with the
summary results from a third fully Icelandic sample from
deCODE Genetics [16–18]. Subjects in the MGS (n controls
= 2,482, n cases= 2,638) sample were ascertained from the
US and Australia, which included cases with a DSM-IV
diagnosis of SZ or schizoaffective disorder, and controls
with no known history of mood, anxiety, substance use,
psychotic, or bipolar disorders. Cases from the iPSYCH
Consortium sample (n controls= 10,175, n cases= 3634)
were ascertained from the Danish Civil Registration System
and linked to the Danish Psychiatric Central Research
Register to obtain diagnoses of SZ, whereas controls were
ascertained by random sampling from the Danish Civil
Registration System and removing individuals with a diag-
nosis of SZ or bipolar disorder. The third case–control
replication set was the Icelandic population-based sample
generated by deCODE Genetics, Inc [18]. comprised of
138,761 controls and 873 cases. Risk scores were calculated
in the replication samples using SNP rsIDs and weights
derived from the 51-study GWAS meta-analysis of risk. We
applied our 90th percentile threshold method to identify
high-risk controls and equal-risk cases. Resilience scores
were calculated in the replication samples using the formulae
derived in the discovery sample, and logistic regression

models were used to estimate the effect of resilience scores
on affection status and the proportion of variance in resi-
lience explained by resilience scores after adjusting for select
principal components to control for population stratification.
For the MGS and iPSYCH samples, we selected principal
components that significantly differed between high-risk
controls and equal-risk cases at a significance threshold of p
< 0.05 (three for MGS and two for iPSYCH). The top 10
principal components were used for the deCODE sample.
We performed an inverse-variance fixed-effect meta-analysis
with the R package metafor (version 2.0.0) using the natural
logarithm of odds ratios and standard errors for resilience
scores obtained from the MGS, Danish iPSYCH, and Ice-
landic deCODE samples, in order to assess the aggregate
predictive capacity of resilience scores. Using code adapted
from Ricopili (https://github.com/Nealelab/ricopili), the
proportion of variance in resilience status explained by
resilience scores was transformed to the liability scale
assuming a population prevalence of 10% based on the 90%
cutoff used to define resilience [19].

Gene annotations

We downloaded a GTF file containing the positions of
57,820 protein- and non-coding genes, RNAs, and pseu-
dogenes from the human reference genome version
GRCh37.p13 from GENCODE [20]. The mapping of var-
iants to genes was performed using the R package Geno-
micRanges. We retained annotations for protein-coding
genes, non-coding genes (microRNAs, snoRNAs, snRNA,
lincRNA), and antisense genes.

Enrichment of resilience SNPs in risk genes

After annotating SNPs to genes, we computed association
scores per gene for both risk and resilience to SZ by aver-
aging the z-scores of intragenic SNPs within a given gene
obtained from our meta-analyses. Gene scores were deter-
mined using 480,469 intragenic risk SNPs and 1,681,145
intragenic resilience SNPs. We did not extend the coordi-
nates of genes beyond the intragenic region when mapping
SNPs to genes. Only risk SNPs at a p < 0.05 significance
level were included to ensure that risk SNPs were mostly
LD-independent (R2 < 0.2) from resilience SNPs found
within the same gene. A linear regression model was used
to predict the per-gene risk association score using the per-
gene resilience association score while simultaneously
adjusting for gene length (in kilobases), the number of
SNPs per kilobase of gene length, the average minor allele
frequency of variants in each gene, and the chromosome the
gene was located on. Cluster-robust standard errors were
computed to correct for heteroscedasticity potentially
caused by LD between genes.

A polygenic resilience score moderates the genetic risk for schizophrenia
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Results

Polygenic resilience scores

As expected, resilience scores were significantly associated
with resilience status in our discovery set (top panel of
Fig. 2) with a maximum of 46.9% of the variance in resi-
lience explained by these scores (two-tailed p < 1.0 ×
10−300). To replicate the association of resilience scores
with resilience status, we performed a meta-analysis using
results from three fully independent data sets: European

ancestry subsample of the Molecular Genetics of Schizo-
phrenia study (MGS; high-risk controls n= 244, high-risk
cases n= 811), the Danish iPSYCH study (high-risk con-
trols n= 931, high-risk cases n= 465), and Icelandic
deCODE Genetics samples (high-risk controls n= 6944,
high-risk cases n= 161). These samples yielded a total of
8,119 high-risk controls and 1,437 high-risk cases. Our
meta-analysis replicated the significant association of resi-
lience scores with resilience status across five p-value bins
(p < 0.2, p < 0.3, p < 0.5, p < 0.7, and p < 1.0), with the most
significant effect found at the p < 0.3 bin (OR= 1.12 per

Fig. 2 (Top panel) Polygenic resilience scores were computed in our
discovery sample (high-risk controls= 3,786, high-risk cases=
18,619) based on results obtained from GWAS meta-analysis of
resilience to SZ. The barplot shows the amount of variance in resi-
lience explained by resilience scores (i.e., high-risk controls versus
high-risk cases) explained by resilience scores across ten p-value bins.
The dot plot shows corresponding Odds Ratios (OR) for resilience
scores, wherein OR > 1.0 represents that high-risk controls have higher
resilience scores compared with high-risk cases. (Bottom panel) The

predictive performance of polygenic resilience scores is shown based
on a meta-analysis of results obtained from three independent repli-
cation samples (Molecular Genetics of Schizophrenia, iPSYCH, and
deCODE Genetics; high-risk controls= 7,653, high-risk cases=
1,903). Average Nagelkerke’s pseudo-R2 values calculated using
arithmetic means and 95% confidence intervals are shown in the
bottom left panel. Meta-analysis was used to pool natural log of OR
and standard errors with an inverse-variance fixed effect model using
the R package metafor

J. L. Hess et al.



standardized unit increase in resilience score, SE= 0.041,
two-tailed p= 0.0044; bottom panel of Fig. 2). The repli-
cated effects of resilience scores survived multiple-testing
correction for each p-value bin at the Benjamini-Hochberg
FDR < 0.05 level. In the replication sets, resilience scores
explained an average 0.042% (SD= 0.0001) of the variance
in resilience status or 0.07% (SD= 0.0002) under the
liability-threshold model (i.e., the SNP-heritability of resi-
lience, or h2SNP).

Risk and resilience scores showed a small but significant
positive correlation in the full discovery sample (Pearson’s
r= 0.08, 95% CI= 0.068–0.083, degrees of freedom
[df]= 66,615, two-tailed p < 8.2 × 10−95), but this differed
by affection status. Risk and resilience scores were not
significantly correlated among SZ cases (Pearson’s r=
−0.003, 95% CI=−0.015–0.008, df= 28867, two-tailed
p= 0.54), but were strongly and significantly positively
correlated in controls (Pearson’s r= 0.47, 95% CI=
0.461–0.477, df= 37746, two-tailed p < 2.2 × 10−16), which
validates the notion that, as risk score increases, so too must
the resilience score in order for an at-risk individual to
remain unaffected (Supplementary Fig. 3).

In the discovery sample, resilience scores were sig-
nificantly higher in controls than cases (two-tailed p < 2.2 ×
10−308), in high-risk controls than high-risk cases (two-
tailed p < 2.2 × 10−308), and in high-risk controls than low-
risk controls (two-tailed p < 2.2 × 10−308, Supplementary
Table 5). Upon meta-analysis of the three replication sam-
ples, these difference in resilience scores replicated between
controls and cases (two-tailed p= 0.013), high-risk controls
and matched-risk cases (two-tailed p= 0.002), and high-
risk controls and low-risk controls (two-tailed p= 8.3 ×
10−8) (Supplementary Table 5). Resilience scores yielded
significant associations only when higher p-value thresholds
were used, thus we examined the level of LD between risk
SNPs and resilience SNPs. We found a significant negative
correlation between a SNP’s association with resilience and
its level of LD with a risk SNP within 1Mb (r=−0.032,
p= 3.7 × 10−17), indicating that stronger resilience SNPs
tend to have less LD with risk SNPs than weaker resilience
SNPs. In addition, we found that the average LD between
risk SNPs and resilience SNPs was low and relatively
uniform across the ten p-value bins used to derive polygenic
scores for resilience (range R2: 0.061–0.070). A significant
negative interaction effect of risk and resilience scores on
case–control status was found in the full PGC sample (β=
−0.71, SE= 0.021, p= 1.6 × 10−246) in the presence of a
significant main effect of risk score (β= 3.013, SE= 0.024,
p < 1.0 × 10−300) and resilience score (β=−0.66, SE=
0.16, p < 1.0 × 10−300). As shown in Supplementary
Table 6, an increased odds of being a case was found in
higher deciles compared with the bottom decile of risk.
Furthermore, controls showed significantly higher resilience

scores compared with cases in the upper half of deciles
(Supplementary Table 6).

Top loci associated with resilience to SZ

Across the ~1.9 million variants (MAF ≥ 5%) examined in
our meta-analysis, we compared the genome-wide resilience
p-values with an expected (i.e., null) distribution of p-
values, revealing that the observed values fit closely with
expected values as shown in the quantile–quantile plot
(Supplementary Fig. 1). The median χ2 value from our
GWAS deviated slightly from the expected χ2 value as
given by the genomic inflation factor (i.e., λGC= 1.03),
which was negligible compared with the level of inflation
seen in the GWAS meta-analysis of SZ risk by (Ripke et al.
[5]) (i.e., λGC= 1.468). None of the individual SNPs dis-
played a genome-wide significant association with resi-
lience to SZ (Supplementary Fig. 2), which was not
unexpected due to the small size of the subsamples of
resilient controls and risk-matched cases relative to the full
sample from which they were drawn. Results for the top
seven resilience loci (p < 1.0 × 10−5) are provided in Sup-
plementary Table 7. As shown in Supplementary Table 7,
the top seven resilience SNPs exhibited low LD with risk
SNPs (range r2= 0.0063–0.089), confirming that top resi-
lience loci are largely independent from risk loci. The
magnitude of effect sizes for the top seven variants asso-
ciated with resilience in the present analysis markedly
exceeded effect sizes of those same variants on SZ risk in
the full GWAS meta-analysis of SZ cases and controls
(Fig. 3). One was nominally associated with risk in the full
MGS replication sample (rs66718632, p= 0.035), and none
in the other replication data sets.

We found qualitative evidence for this at the gene level
as four of the top seven resilience SNPs and liberally
defined risk SNPs (p < 0.05) map to the same genes but
different LD blocks (Supplementary Table 8). A regression
analysis of per-gene association scores for risk and resi-
lience revealed a small but statistically significant positive
linear relationship between a gene’s association with resi-
lience and risk for SZ after adjustment for confounding
variables described in the Methods section (regression β=
0.049, robust SE= 0.011, two-tailed p= 4.35 × 10−6).

Discussion

Genetic analyses of resilience may help us understand
factors that moderate the risk of mental illness among those
at elevated risk. We present here a generalizable strategy to
investigate genetic factors involved in resilience to complex
polygenic disorders, as well as the first application of the
method to demonstrate feasibility. SZ and several other
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psychiatric disorders have high heritability, and GWAS
studies show that common variation is reliably associated
with risk [1, 5, 21–27]. Our approach illuminates the role of
common variation in buffering the penetrance of risk alleles
associated with complex disease, and may aid in unraveling
the sources of their etiologic heterogeneity. We assessed the
validity of our method using the large publicly available
genome-wide data assembled by the PGC for SZ and
replicated both the direction of effect and the significance of
a polygenic resilience score in three independent samples.

Our study produced the first estimate of the SNP-based
heritability for resilience to SZ, which was relatively low
(i.e., h2SNP < 1%) compared with previous estimates of SNP-
based heritability reported for SZ [5, 6]. Note that our
approach did not look for resilience variants close to the risk
variants, and so likely missed a portion. Deriving an esti-
mate of the total heritability of resilience (i.e., H2) from
family or twin-based studies will be important for inter-
pretation of our SNP-heritability results, and for future
studies that will explore the sharing of genetic predictors
between resilience and other phenotypes. We showed that
resilience scores produce conditionally independent effects
on caseness relative to risk scores, confirming that our
hypothesis that resilience alleles are not simply the inverse
of the risk-associated alleles. Our resilience-scoring

algorithm can be applied to GWAS data sets for other
complex medical disorders, especially those for which
polygenic risk scores have previously been derived in
samples independent of those in which resilience is to be
examined (such as our replication samples in the present
study). These resilience scores can in turn be used to
investigate heritable mediators of resilience, and potentially
to identify factors that exert a risk-buffering effect across
diagnostic boundaries. Cross-disorder meta-analyses of
psychiatric GWAS data have already identified shared
polygenic mediators of risk common to several disorders;
this approach could be revisited in the context of resilience
[22]. Another important question future studies may seek to
address is: are there common genetic variants that influence
resilience to SZ and also contribute to personality traits (i.e.,
extraversion, conscientiousness, openness, agreeableness)
or constructs of cognitive well-being (i.e., educational
attainment, genetic cognitive function) associated with the
psychosocial construct of resilience? New methods could be
devised to expand the capabilities of our approach or
address shortcomings. For instance, because we could not
derive a meaningful estimate of heritability from our results
using LD score regression (LDSC) due to weak signals
from regions of low LD, deriving new models for LDSC to
allow for greater flexibility could be valuable. An alter-
native way to conceptualize resilience is as a form of
gene–gene interaction wherein the penetrance of a risk
variant can change based on the effect of a resilience var-
iant. We modeled a relatively simple type of interaction by
computing the multiplicative effect between risk and resi-
lience score on case–control status and found that a sig-
nificant interaction emerged between these scores
(Supplementary Table 6). In future work, extensive simu-
lation work could be performed to evaluate various types of
interaction models to determine which contributes the
strongest effects to resilience. Using knowledge about gene
pathways and/or protein–protein interaction networks may
help to discern epistatic effects between risk and resilience
loci, and yield novel insight into the biology of disease. In
short, there are multiple ways our method could be used and
adapted to revisit previous single- and cross-disorder ana-
lyses to uncover genetic factors that mitigate vulnerability
with shared or disorder-specific effects, and to account for
the decreased penetrance and missing heritability in poly-
genic risk scores.

Because we focus on the tail of the risk score distribu-
tion, the sample size for our resilience analyses was an order
of magnitude lower than the corresponding analyses of risk.
Nevertheless, seven loci reached a ‘suggestive’ level of
association (p < 1.0 × 10−5) with resilience to SZ. Assuming
effect sizes hold in larger samples (despite the possibility of
winner’s curse), adding about 2,030 high-risk controls to
our analysis would be expected to yield sufficient power

Fig. 3 A pair of odds ratios and confidence intervals are plotted
for the top seven common variants associated with resilience to SZ
(p < 1× 10−05). This demonstrates that variants associated with resi-
lience to SZ were not significantly associated with SZ risk (i.e.,
p > 0.05). Associations in red are for resilience obtained from the
sample of individuals at the upper tail of the distribution of risk scores
(i.e., high-risk controls, n= 3,775, and equal-risk cases, n= 18,581),
whereas associations in blue were obtained from the full sample of SZ
cases and controls in the published PGC-SZ2 data set (51 studies,
n cases= 32,838, n controls= 44,357). A dotted line denoted no effect
(i.e., OR= 1.0). An OR > 1.0 for red dots indicates that the allele was
observed more frequently in high-risk controls than high-risk cases
(i.e., increases resilience), whereas a OR > 1.0 for blue dots indicates
that the allele was observed more frequently in cases than controls
(i.e., increases risk)
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(>80%) to drive the lowest-ranking SNP in the 5.0 × 10−8 <
p < 1.0 × 10−5 bin (e.g., rs11595156(T), OR= 1.32, allele
frequency= 0.94) to genome-wide significance. However,
it is important for independent replication in a much larger
sample, which may be accomplished with the forthcoming
phase-3 release of GWAS data from the PGC-SZ Working
Group. Following replication, it will be appropriate to build
on our genome-wide findings using bioinformatic tools,
databases of molecular pathways, and functional annota-
tions to identify and characterize the genetically driven
biological pathways that mediate heritable effects on
resilience.

To be conservative, we imposed some limitations on our
approach, We used a conservative variant-filtering strategy
to identify resilience-associated loci that were independent
of risk variants. However, it is plausible biological that
some resilience variants might be in the same regions or
genes as risk variants. Risk-mediating common variants are
more likely to occur in regions with broad LD [28], but the
scope of the present study, after filtering out risk loci,
restricted us to areas with relatively low LD. One caveat
with our GWAS results was that resilience variants did not
have strong LD support, because resilience variants were
largely restricted to regions of low LD. Our approach was
designed to identify resilience SNPs that are LD-
independent of risk SNPs based on liberal definitions of
risk (p < 0.05) and of LD (R2 < 0.2 with a risk-conferring
variant) so that we avoided simply detecting additional risk
SNPs; yet, biologically, it is expected that resilience SNPs
can reduce the penetrance of nearby risk SNPs, even those
within the same gene or LD block, such as by counteracting
effects on gene expression levels (i.e., risk allele increases
expression of gene while resilience allele decreases
expression). Future work using Mendelian randomization or
conditional association testing in much larger samples could
be better suited to test the hypothesis that resilience signals
are more likely to co-localize with loci and genes harboring
risk variants for SZ.

There was a dramatic reduction in predictive perfor-
mance of resilience scores when our model was applied to
the much smaller, independent replication samples, as
expected. Nevertheless, the resilience model was robust
enough to yield significant prediction in the meta-analysis
of replication samples. The sharp drop-off in variance
explained indicates overfitting, which happens when train-
ing a model with an inadequate sample size or when too
many noisy parameters are included in the model [29]. A
challenge to our study design was statistical power, but we
expect that the strength of our results in terms of variance
explained and p-values of individuals SNPs will increase
with the addition of more samples. The sample size for our
study actually exceeded the discovery samples for recent
PGC studies for anorexia nervosa [30], autism [21], and

obsessive-compulsive disorder [31], as well the initial SZ
study by the PGC in 2011 [32]. Looking back at the past
decade of GWAS for SZ [5, 6, 26, 32, 33], our sample size
is at the midpoint studies published between 2008 and
2009, and thus we might anticipate that, as in the study of
SZ, the significance of individual resilience loci and their
collective phenotypic variance explained will grow expo-
nentially after the addition of more samples.

In conclusion, we have presented evidence for the
validity of a method to identify individual loci and poly-
genic scores associated with resilience to a highly heritable
complex disorder. This supports the idea that common
variants that are not in LD with known SZ risk alleles exert
a protective effect. Further replication will be key for vali-
dation of our method and findings. If our results are sub-
stantiated, for example in the forthcoming third wave of
data from PGC-SZ, we anticipate a new wave of research on
the genetics of resilience, the biology associated with resi-
lience variants, and interventions that can foster resilience in
at-risk populations.

Code availability

Custom written R scripts used for statistical analyses can be
provided upon request.

Data availability

Genome-wide association summary statistics for all 1.9
million SNPs can be downloaded from: https://www.
dropbox.com/sh/qhqbkcwvgzuwho3/AAClnqCvIdxIRsa
klOLMGDLra?dl=0. The data used in this study were
provided under restricted access by the Psychiatric Geno-
mics Consortium (PGC), Lundbeck Foundation Initiative
for Integrative Psychiatric Research (iPSYCH), and
deCODE Genetics, Inc. Only summary statistics were made
available to us from deCODE Genetics, Inc. We were
granted access to imputed genome-wide SNP genotypes by
PGC and iPSYCH. The data sets from PGC and iPSYCH
remained on the Genetic Cluster Computer and GenomeDK
cluster, respectively, where statistical analyses were
performed.
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