35 research outputs found
Potential health risks of complementary alternative medicines in cancer patients
Many cancer patients use complementary alternative medicines (CAMs) but may not be aware of the potential risks. There are no studies quantifying such risks, but there is some evidence of patient risk from case reports in the literature. A cross-sectional survey of patients attending the outpatient department at a specialist cancer centre was carried out to establish a pattern of herbal remedy or supplement use and to identify potential adverse side effects or drug interactions with conventional medicines. If potential risks were identified, a health warning was issued by a pharmacist. A total of 318 patients participated in the study. Of these, 164 (51.6%) took CAMs, and 133 different combinations were recorded. Of these, 10.4% only took herbal remedies, 42.1% only supplements and 47.6% a combination of both. In all, 18 (11.0%) reported supplements in higher than recommended doses. Health warnings were issued to 20 (12.2%) patients. Most warnings concerned echinacea in patients with lymphoma. Further warnings were issued for cod liver/fish oil, evening primrose oil, gingko, garlic, ginseng, kava kava and beta-carotene. In conclusion, medical practitioners need to be able to identify the potential risks of CAMs. Equally, patients should be encouraged to disclose their use. Also, more research is needed to quantify the actual health risks
Design concepts for the Cherenkov Telescope Array CTA: an advanced facility for ground-based high-energy gamma-ray astronomy
Ground-based gamma-ray astronomy has had a major breakthrough with the impressive results obtained using systems of imaging atmospheric Cherenkov telescopes. Ground-based gamma-ray astronomy has a huge potential in astrophysics, particle physics and cosmology. CTA is an international initiative to build the next generation instrument, with a factor of 5-10 improvement in sensitivity in the 100 GeV-10 TeV range and the extension to energies well below 100 GeV and above 100 TeV. CTA will consist of two arrays (one in the north, one in the south) for full sky coverage and will be operated as open observatory. The design of CTA is based on currently available technology. This document reports on the status and presents the major design concepts of CTA
Multi-messenger observations of a binary neutron star merger
On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta