510 research outputs found

    What influences healthcare professionals' treatment preferences for older women with operable breast cancer?: an application of the discrete choice experiment

    Get PDF
    Introduction Primary endocrine therapy (PET) is used variably in the UK as an alternative to surgery for older women with operable breast cancer. Guidelines state that only patients with “significant comorbidity” or “reduced life expectancy” should be treated this way and age should not be a factor. Methods A Discrete Choice Experiment (DCE) was used to determine the impact of key variables (patient age, comorbidity, cognition, functional status, cancer stage, cancer biology) on healthcare professionals' (HCP) treatment preferences for operable breast cancer among older women. Multinomial logistic regression was used to identify associations. Results 40% (258/641) of questionnaires were returned. Five variables (age, co-morbidity, cognition, functional status and cancer size) independently demonstrated a significant association with treatment preference (p < 0.05). Functional status was omitted from the multivariable model due to collinearity, with all other variables correlating with a preference for operative treatment over no preference (p < 0.05). Only co-morbidity, cognition and cancer size correlated with a preference for PET over no preference (p < 0.05). Conclusion The majority of respondents selected treatment in accordance with current guidelines, however in some scenarios, opinion was divided, and age did appear to be an independent factor that HCPs considered when making a treatment decision in this population

    A comparative study of the variables used to measure syntactic complexity and accuracy in task-based research

    Get PDF
    The constructs of complexity, accuracy and fluency (CAF) have been used extensively to investigate learner performance on second language tasks. However, a serious concern is that the variables used to measure these constructs are sometimes used conventionally without any empirical justification. It is crucial for researchers to understand how results might be different depending on which measurements are used, and accordingly, choose the most appropriate variables for their research aims. The first strand of this article examines the variables conventionally used to measure syntactic complexity in order to identify which may be the best indicators of different proficiency levels, following suggestions by Norris and Ortega. The second strand compares the three variables used to measure accuracy in order to identify which one is most valid. The data analysed were spoken performances by 64 Japanese EFL students on two picture-based narrative tasks, which were rated at Common European Framework of Reference for Languages (CEFR) A2 to B2 according to Rasch-adjusted ratings by seven human judges. The tasks performed were very similar, but had different degrees of what Loschky and Bley-Vroman term ‘task-essentialness’ for subordinate clauses. It was found that the variables used to measure syntactic complexity yielded results that were not consistent with suggestions by Norris and Ortega. The variable found to be the most valid for measuring accuracy was errors per 100 words. Analysis of transcripts revealed that results were strongly influenced by the differing degrees of task-essentialness for subordination between the two tasks, as well as the spread of errors across different units of analysis. This implies that the characteristics of test tasks need to be carefully scrutinised, followed by careful piloting, in order to ensure greater validity and reliability in task-based research

    Radio Observations of the January 20, 2005 X-Class Event

    Full text link
    We present a multi-frequency and multi-instrument study of the 20 January 2005 event. We focus mainly on the complex radio signatures and their association with the active phenomena taking place: flares, CMEs, particle acceleration and magnetic restructuring. As a variety of energetic particle accelerators and sources of radio bursts are present, in the flare-ejecta combination, we investigate their relative importance in the progress of this event. The dynamic spectra of {Artemis-IV-Wind/Waves-Hiras with 2000 MHz-20 kHz frequency coverage, were used to track the evolution of the event from the low corona to the interplanetary space; these were supplemented with SXR, HXR and gamma-ray recordings. The observations were compared with the expected radio signatures and energetic-particle populations envisaged by the {Standard Flare--CME model and the reconnection outflow termination shock model. A proper combination of these mechanisms seems to provide an adequate model for the interpretation of the observational data.Comment: Accepted for publication in Solar Physic

    Cold Plasma Dispersion Relations in the Vicinity of a Schwarzschild Black Hole Horizon

    Full text link
    We apply the ADM 3+1 formalism to derive the general relativistic magnetohydrodynamic equations for cold plasma in spatially flat Schwarzschild metric. Respective perturbed equations are linearized for non-magnetized and magnetized plasmas both in non-rotating and rotating backgrounds. These are then Fourier analyzed and the corresponding dispersion relations are obtained. These relations are discussed for the existence of waves with positive angular frequency in the region near the horizon. Our results support the fact that no information can be extracted from the Schwarzschild black hole. It is concluded that negative phase velocity propagates in the rotating background whether the black hole is rotating or non-rotating.Comment: 27 pages, 11 figures accepted for publication in Gen. Relat. & Gravi

    Seismology of the Sun : Inference of Thermal, Dynamic and Magnetic Field Structures of the Interior

    Full text link
    Recent overwhelming evidences show that the sun strongly influences the Earth's climate and environment. Moreover existence of life on this Earth mainly depends upon the sun's energy. Hence, understanding of physics of the sun, especially the thermal, dynamic and magnetic field structures of its interior, is very important. Recently, from the ground and space based observations, it is discovered that sun oscillates near 5 min periodicity in millions of modes. This discovery heralded a new era in solar physics and a separate branch called helioseismology or seismology of the sun has started. Before the advent of helioseismology, sun's thermal structure of the interior was understood from the evolutionary solution of stellar structure equations that mimicked the present age, mass and radius of the sun. Whereas solution of MHD equations yielded internal dynamics and magnetic field structure of the sun's interior. In this presentation, I review the thermal, dynamic and magnetic field structures of the sun's interior as inferred by the helioseismology.Comment: To be published in the proceedings of the meeting "3rd International Conference on Current Developments in Atomic, Molecular, Optical and Nano Physics with Applications", December 14-16, 2011, New Delhi, Indi

    Computer-aided design of nano-filter construction using DNA self-assembly

    Get PDF
    Computer-aided design plays a fundamental role in both top-down and bottom-up nano-system fabrication. This paper presents a bottom-up nano-filter patterning process based on DNA self-assembly. In this study we designed a new method to construct fully designed nano-filters with the pores between 5 nm and 9 nm in diameter. Our calculations illustrated that by constructing such a nano-filter we would be able to separate many molecules

    Gravitational Lensing at Millimeter Wavelengths

    Full text link
    With today's millimeter and submillimeter instruments observers use gravitational lensing mostly as a tool to boost the sensitivity when observing distant objects. This is evident through the dominance of gravitationally lensed objects among those detected in CO rotational lines at z>1. It is also evident in the use of lensing magnification by galaxy clusters in order to reach faint submm/mm continuum sources. There are, however, a few cases where millimeter lines have been directly involved in understanding lensing configurations. Future mm/submm instruments, such as the ALMA interferometer, will have both the sensitivity and the angular resolution to allow detailed observations of gravitational lenses. The almost constant sensitivity to dust emission over the redshift range z=1-10 means that the likelihood for strong lensing of dust continuum sources is much higher than for optically selected sources. A large number of new strong lenses are therefore likely to be discovered with ALMA, allowing a direct assessment of cosmological parameters through lens statistics. Combined with an angular resolution <0.1", ALMA will also be efficient for probing the gravitational potential of galaxy clusters, where we will be able to study both the sources and the lenses themselves, free of obscuration and extinction corrections, derive rotation curves for the lenses, their orientation and, thus, greatly constrain lens models.Comment: 69 pages, Review on quasar lensing. Part of a LNP Topical Volume on "Dark matter and gravitational lensing", eds. F. Courbin, D. Minniti. To be published by Springer-Verlag 2002. Paper with full resolution figures can be found at ftp://oden.oso.chalmers.se/pub/tommy/mmviews.ps.g

    Predictive performance models in the South African Business Process Services industry

    Get PDF
    Abstract: Orientation: An earlier systematic literature review study (Jacobs & Roodt, 2011) conducted on research in Business Process Services (BPS) industry sector companies identified a number of variables that could be empirically linked to turnover intention and individual performance. The literature pointed to a potential health promotion process, as well as an individual performance process in the BPS environment. Research purpose: The purpose of this study is to test two different predictive models that may explain two distal outcomes, namely turnover intention and individual employee performance, in the South African (SA) BPS industry

    Double-Spin Asymmetry in the Cross Section for Exclusive rho^0 Production in Lepton-Proton Scattering

    Get PDF
    Evidence for a positive longitudinal double-spin asymmetry = 0.24 +-0.11 (stat) +-0.02 (syst) in the cross section for exclusive diffractive rho^0(770) vector meson production in polarised lepton-proton scattering was observed by the HERMES experiment. The longitudinally polarised 27.56 GeV HERA positron beam was scattered off a longitudinally polarised pure hydrogen gas target. The average invariant mass of the photon-proton system has a value of = 4.9 GeV, while the average negative squared four-momentum of the virtual photon is = 1.7 GeV^2. The ratio of the present result to the corresponding spin asymmetry in inclusive deep-inelastic scattering is in agreement with an early theoretical prediction based on the generalised vector meson dominance model.Comment: 10 pages, 4 embedded figures, LaTe
    corecore