15 research outputs found

    Status and prospects of liver cirrhosis treatment by using bone marrow-derived cells and mesenchymal cells

    Get PDF
    In 2003, we started autologous bone marrow cell infusion (ABMi) therapy for treating liver cirrhosis. ABMi therapy uses 400 mL of autologous bone marrow obtained under general anesthesia and infused mononuclear cells from the peripheral vein. The clinical study expanded and we treated liver cirrhosis induced by HCV and HBV infection and alcohol consumption. We found that the ABMi therapy was effective for cirrhosis patients and now we are treating patients with combined HIV and HCV infection and with metabolic syndrome-induced liver cirrhosis. Currently, to substantiate our findings that liver cirrhosis can be successfully treated by the ABMi therapy, we are conducting randomized multicenter clinical studies designated "Advanced medical technology B" for HCV-related liver cirrhosis in Japan. On the basis of our clinical study, we developed a proof-of-concept showing that infusion of bone marrow cells (BMCs) improved liver fibrosis and sequentially activated proliferation of hepatic progenitor cells and hepatocytes, further promoting restoration of liver functions. To treat patients with severe forms of liver cirrhosis, we continued translational research to develop less invasive therapies by using mesenchymal stem cells derived from bone marrow. We obtained a small quantity of BMCs under local anesthesia and expanded them into mesenchymal stem cells that will then be used for treating cirrhosis. In this review, we present our strategy to apply the results of our laboratory research to clinical studies. Copyright © 2014, Mary Ann Liebert, Inc

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Multi-messenger Observations of a Binary Neutron Star Merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ∼ 1.7 {{s}} with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of {40}-8+8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 {M}ȯ . An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ∼ 40 {{Mpc}}) less than 11 hours after the merger by the One-Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ∼10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ∼ 9 and ∼ 16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC 4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta.</p

    Status and prospects of liver cirrhosis treatment by using bone marrow-derived cells and mesenchymal cells

    No full text
    In 2003, we started autologous bone marrow cell infusion (ABMi) therapy for treating liver cirrhosis. ABMi therapy uses 400 mL of autologous bone marrow obtained under general anesthesia and infused mononuclear cells from the peripheral vein. The clinical study expanded and we treated liver cirrhosis induced by HCV and HBV infection and alcohol consumption. We found that the ABMi therapy was effective for cirrhosis patients and now we are treating patients with combined HIV and HCV infection and with metabolic syndrome-induced liver cirrhosis. Currently, to substantiate our findings that liver cirrhosis can be successfully treated by the ABMi therapy, we are conducting randomized multicenter clinical studies designated "Advanced medical technology B" for HCV-related liver cirrhosis in Japan. On the basis of our clinical study, we developed a proof-of-concept showing that infusion of bone marrow cells (BMCs) improved liver fibrosis and sequentially activated proliferation of hepatic progenitor cells and hepatocytes, further promoting restoration of liver functions. To treat patients with severe forms of liver cirrhosis, we continued translational research to develop less invasive therapies by using mesenchymal stem cells derived from bone marrow. We obtained a small quantity of BMCs under local anesthesia and expanded them into mesenchymal stem cells that will then be used for treating cirrhosis. In this review, we present our strategy to apply the results of our laboratory research to clinical studies. Copyright © 2014, Mary Ann Liebert, Inc

    Status and prospects of liver cirrhosis treatment by using bone marrow-derived cells and mesenchymal cells

    No full text
    In 2003, we started autologous bone marrow cell infusion (ABMi) therapy for treating liver cirrhosis. ABMi therapy uses 400 mL of autologous bone marrow obtained under general anesthesia and infused mononuclear cells from the peripheral vein. The clinical study expanded and we treated liver cirrhosis induced by HCV and HBV infection and alcohol consumption. We found that the ABMi therapy was effective for cirrhosis patients and now we are treating patients with combined HIV and HCV infection and with metabolic syndrome-induced liver cirrhosis. Currently, to substantiate our findings that liver cirrhosis can be successfully treated by the ABMi therapy, we are conducting randomized multicenter clinical studies designated "Advanced medical technology B" for HCV-related liver cirrhosis in Japan. On the basis of our clinical study, we developed a proof-of-concept showing that infusion of bone marrow cells (BMCs) improved liver fibrosis and sequentially activated proliferation of hepatic progenitor cells and hepatocytes, further promoting restoration of liver functions. To treat patients with severe forms of liver cirrhosis, we continued translational research to develop less invasive therapies by using mesenchymal stem cells derived from bone marrow. We obtained a small quantity of BMCs under local anesthesia and expanded them into mesenchymal stem cells that will then be used for treating cirrhosis. In this review, we present our strategy to apply the results of our laboratory research to clinical studies. Copyright © 2014, Mary Ann Liebert, Inc
    corecore