197 research outputs found

    Orbital motion of the young brown dwarf companion TWA 5 B

    Full text link
    With more adaptive optics images available, we aim at detecting orbital motion for the first time in the system TWA 5 A+B. We measured separation and position angle between TWA 5 A and B in each high-resolution image available and followed their change in time, because B should orbit around A. The astrometric measurement precision is about one milli arc sec. With ten year difference in epoch, we can clearly detect orbital motion of B around A, a decrease in separation by ~ 0.0054 arc sec per year and a decrease in position angle by ~ 0.26 degrees per year. TWA 5 B is a brown dwarf with ~ 25 Jupiter masses (Neuh\"auser et al. 2000), but having large error bars (4 to 145 Jupiter masses, Neuh\"auser et al. 2009). Given its large projected separation from the primary star, ~ 86 AU, and its young age ~ 10 Myrs), it has probably formed star-like, and would then be a brown dwarf companion. Given the relatively large changes in separation and position angle between TWA 5 A and B, we can conclude that they orbit around each other on an eccentric orbit. Some evidence is found for a curvature in the orbital motion of B around A - most consistent with an elliptic (e=0.45) orbit. Residuals around the best-fit ellipse are detected and show a small-amplitude (~ 18 mas) periodic sinusoid with ~ 5.7 yr period, i.e., fully consistent with the orbit of the inner close pair TWA 5 Aa+b. Measuring these residuals caused by the photocenter wobble - even in unresolved images - can yield the total mass of the inner pair, so can test theoretical pre-main sequence models.Comment: 6 pages, 4 figures, accepted for publication in A&A; corrected typo in amplitude below Fig.

    Confirmation of the binary status of Cha Halpha 2 - a very young low-mass binary in Chamaeleon

    Full text link
    Neuhaeuser & Comeron (1998, 1999) presented direct imaging evidence, as well as first spectra, of several young stellar and sub-stellar M6- to M8-type objects in the Cha I dark cloud. One of these objects is Cha Halpha 2, classified as brown dwarf candidate in several publications and suggested as possible binary in Neuhaeuser et al. (2002). We have searched around Cha Halpha 2 for close and faint companions with adaptive optics imaging. Two epochs of direct imaging data were taken with the Very Large Telescope (VLT) Adaptive Optics instrument NACO in February 2006 and March 2007 in Ks-band. We retrieved an earlier image from 2005 from the European Southern Observatory (ESO) Science Archive Facility, increasing the available time coverage. After confirmation of common proper motion, we deduce physical parameters of the objects by spectroscopy, like temperature and mass. We find Cha Halpha 2 to be a very close binary of ~0.16 arcsec separation, having a flux ratio of ~0.91, thus having almost equal brightness and indistinguishable spectral types within the errors. We show that the two tentative components of Cha Halpha 2 form a common proper motion pair, and that neither component is a non-moving background object. We even find evidence for orbital motion. A combined spectrum of both stars spanning optical and near-infrared parts of the spectral energy distribution yields a temperature of 3000+/-100 K, corresponding to a spectral type of M6+/-1 and a surface gravity of log g= 4.0 +0.75-0.5, both from a comparison with GAIA model atmospheres. We derive masses of ~0.110 Msun (>0.070 Msun) and ~0.124 Msun (>0.077 Msun) for the two components of Cha Halpha 2, i.e., probably low-mass stars, but one component could possibly be a brown dwarf.Comment: 6 pages, 8 figures, accepted for publication in A&

    Astrometric confirmation of young low-mass binaries and multiple systems in the Chamaeleon star-forming regions

    Full text link
    The star-forming regions in Chamaeleon are one of the nearest (distance ~165 pc) and youngest (age ~2 Myrs) conglomerates of recently formed stars and the ideal target for population studies of star formation. We investigate a total of 16 Cha targets, which have been suggested, but not confirmed as binaries or multiple systems in previous literature. We used the adaptive optics instrument Naos-Conica (NACO) at the Very Large Telescope Unit Telescope 4 of the Paranal Observatory, at 2-5 different epochs, in order to obtain relative and absolute astrometric measurements, as well as differential photometry in the J, H, and K band. On the basis of known proper motions and these observations, we analyse the astrometric results in our "Proper Motion Diagram" (PMD: angular separation / position angle versus time), to eliminate possible (non-moving) background stars, establish co-moving binaries and multiples, and search for curvature as indications for orbital motion. All previously suggested close components are co-moving and no background stars are found. The angular separations range between 0.07 and 9 arcseconds, corresponding to projected distances between the components of 6-845 AU. Thirteen stars are at least binaries and the remaining three (RX J0919.4-7738, RX J0952.7-7933, VW Cha) are confirmed high-order multiple systems with up to four components. In 13 cases, we found significant slopes in the PMDs, which are compatible with orbital motion whose periods range from 60 to 550 years. However, in only four cases there are indications of a curved orbit, the ultimate proof of a gravitational bond. Massive primary components appear to avoid the simultaneous formation of equal-mass secondary components. (abridged)Comment: 33 pages, 22 figures, accepted for publication in A&A, 2nd version: typos and measurement unit added in Table

    The sensory feedback mechanisms enabling couples to walk synchronously: An initial investigation

    Get PDF
    The inattentive eye often will not notice it, but synchronization among human walking partners is quite common. In this first investigation of this phenomenon, we studied its frequency and the mechanisms that contribute to this form of "entrainment." Specifically, by modifying the available communication links between two walking partners, we isolated the feedback mechanisms that enable couples to synchronize their stepping pattern when they walk side-by-side. Although subjects were unaware of the research aims and were not specifically asked to walk in synchrony, we observed synchronized walking in almost 50% of the walking trials, among couples who do not usually walk together. The strongest in-phase synchrony occurred in the presence of tactile feedback (i.e., handholding), perhaps because of lower and upper extremity coupling driven in part by arm swing. Interestingly, however, even in the absence of visual or auditory communication, couples also frequently walked in synchrony while 180 degrees out-of-phase, likely using different feedback mechanisms. These findings may partially explain how patients with certain gait disorders and disturbed rhythm enhance their gait when they walk with a partner and suggest alternative interventions that might improve the stepping pattern. Further, this preliminary investigation highlights the relatively ubiquitous nature of an interesting phenomenon that has not previously been studied and suggests that further work is needed to better understand the mechanisms that entrain the gait of two walking partners and allows couples to walk in synchrony with minimal or no conscious effort

    A new benchmark T8-9 brown dwarf and a couple of new mid-T dwarfs from the UKIDSS DR5+ LAS

    Full text link
    Benchmark brown dwarfs are those objects for which fiducial constraints are available, including effective temperature, parallax, age, metallicity. We searched for new cool brown dwarfs in 186 sq.deg. of the new area covered by the data release DR5+ of the UKIDSS Large Area Survey. Follow-up optical and near-infrared broad-band photometry, and methane imaging of four promising candidates, revealed three objects with distinct methane absorption, typical of mid- to late-T dwarfs, and one possibly T4 dwarf. The latest-type object, classified as T8-9, shares its large proper motion with Ross 458 (BD+13o2618), an active M0.5 binary which is 102" away, forming a hierarchical low-mass star+brown dwarf system. Ross 458C has an absolute J-band magnitude of 16.4, and seems overluminous, particularly in the K band, compared to similar field brown dwarfs. We estimate the age of the system to be less than 1 Gyr, and its mass to be as low as 14 Jupiter masses for the age of 1 Gyr. At 11.4 pc, this new late T benchmark dwarf is a promising target to constrain the evolutionary and atmospheric models of very low-mass brown dwarfs. We present proper motion measurements for our targets and for 13 known brown dwarfs. Two brown dwarfs have velocities typical of the thick disk and may be old brown dwarfs.Comment: 15 pages, 10 figures and 6 tables. Accepted by MNRAS. Uses mn2e.cls and aas_macr

    Direct evidence of a sub-stellar companion around CT Cha

    Full text link
    In our ongoing search for close and faint companions around T Tauri stars, we found a very faint (Ks=14.9mag, Ks_0=14.4mag) object, just ~2.67" northwest of the Chamaeleon star-forming region member CT Cha corresponding to a projected separation of ~440AU at 165+/-30 pc. We show that CT Cha A and this faint object form a common proper motion pair from data of the VLT Adaptive Optics (AO) instrument NACO taken in February 2006 and March 2007 and that the companion is by >=4 sigma significance not a stationary background object. Our AO integral field spectroscopy with SINFONI in J, and H+K bands yields a temperature of 2600+/-250K for the companion and an optical extinction of A_V=5.2+/-0.8mag, when compared to spectra calculated from Drift-Phoenix model atmospheres. We demonstrate the validity of the model fits by comparison to several other well-known young sub-stellar objects. Relative flux calibration of the bands was achieved using photometry from the NACO imaging data. We conclude that the CT Cha companion is a very low-mass member of Chamaeleon and very likely a physical companion to CT Cha, as the probability for a by chance alignment is <=0.01. Due to a prominent Pa-Beta emission in the J-band, accretion is probably still ongoing onto the CT Cha companion. From temperature and luminosity (log(Lbol/Lsun)= -2.68+/-0.21), we derive a radius of R=2.20+0.81-0.60 R_Jup. We find a consistent mass of M=17+/-6 MJup for the CT Cha companion from both its luminosity and temperature when placed on evolutionary tracks. Hence, the CT Cha companion is most likely a wide brown dwarf companion or possibly even a planetary mass object.Comment: 10 pages, 11 figures, accepted for publication in A&

    Edge-on disk around the T Tauri star [MR81] Halpha 17 NE in CrA

    Full text link
    Using the speckle camera SHARP at the 3.5m ESO NTT, K\"ohler and collaborators found an object ~3.5 mag fainter in K only 1.3" north-east of the T Tauri star [MR81] Ha 17 in the Corona Australis (CrA) star-forming region, which could be either a brown dwarf or a T Tauri star with an edge-on disk. We attempt to study this faint object in detail. We acquired deep VLT NACO near-infrared images at three epochs to determine, whether [MR81] Ha 17 and the nearby faint object are co-moving and to measure the infrared colors of both objects. We obtained optical and infrared spectra of both objects with the VLT using FORS and ISAAC, respectively, to determine spectral types and temperatures as well as ages and masses. The T Tauri star [MR81] Ha 17 and the faint nearby object have a projected separation of 1369.58 mas, i.e. 178 AU at 130 pc. They share the same proper motion (~5 sigma), so that they most certainly form a bound binary pair. The apparently fainter component [MR81] Ha 17 NE has a spectral type of M2e, while the apparently brighter component [MR81] Ha 17 SW, the previously known T Tauri star, has a spectral type of M4-5e. We can identify a nearly edge-on disk around [MR81] Ha 17 NE by visual inspection, which has a diameter of at least 30 to 50 AU. We are able to detect strong emission lines in [MR81] Ha 17 NE, which are almost certainly due to ongoing accretion. The NE object is detectable only by means of its scattered light. If both objects are coeval (2-3 Myr) and located at the same distance (~130 pc as CrA), then the apparently fainter [MR81] Ha 17 NE is more massive (primary) component with a nearly edge-on disk and the apparently brighter component [MR81] Ha 17 SW is less massive (com- panion). Both are low-mass T Tauri stars with masses of ~0.5 and 0.23 \pm 0.05 solar masses, respectively.Comment: A&A in pres

    In-depth study of moderately young but extremely red, very dusty substellar companion HD206893B

    Get PDF
    Accepted for publication in Astronomy & Astrophysics. Reproduced with permission from Astronomy & Astrophysics. © 2018 ESO.The substellar companion HD206893b has recently been discovered by direct imaging of its disc-bearing host star with the SPHERE instrument. We investigate the atypical properties of the companion, which has the reddest near-infrared colours among all known substellar objects, either orbiting a star or isolated, and we provide a comprehensive characterisation of the host star-disc-companion system. We conducted a follow-up of the companion with adaptive optics imaging and spectro-imaging with SPHERE, and a multiinstrument follow-up of its host star. We obtain a R=30 spectrum from 0.95 to 1.64 micron of the companion and additional photometry at 2.11 and 2.25 micron. We carried out extensive atmosphere model fitting for the companions and the host star in order to derive their age, mass, and metallicity. We found no additional companion in the system in spite of exquisite observing conditions resulting in sensitivity to 6MJup (2MJup) at 0.5" for an age of 300 Myr (50 Myr). We detect orbital motion over more than one year and characterise the possible Keplerian orbits. We constrain the age of the system to a minimum of 50 Myr and a maximum of 700 Myr, and determine that the host-star metallicity is nearly solar. The comparison of the companion spectrum and photometry to model atmospheres indicates that the companion is an extremely dusty late L dwarf, with an intermediate gravity (log g 4.5-5.0) which is compatible with the independent age estimate of the system. Though our best fit corresponds to a brown dwarf of 15-30 MJup aged 100-300 Myr, our analysis is also compatible with a range of masses and ages going from a 50 Myr 12MJup planetary-mass object to a 50 MJup Hyades-age brown dwarf...Peer reviewedFinal Accepted Versio

    Gaia GraL: Gaia DR2 Gravitational Lens Systems. V. Doubly-imaged QSOs discovered from entropy and wavelets

    Get PDF
    The discovery of multiply-imaged gravitationally lensed QSOs is fundamental to many astronomical and cosmological studies. However, these objects are rare and challenging to discover due to requirements of high-angular resolution astrometric, multiwavelength photometric and spectroscopic data. This has limited the number of known systems to a few hundred objects. We aim to reduce the constraints on angular resolution and discover multiply-imaged QSO candidates by using new candidate selection principles based on unresolved photometric time-series and ground-based images from public surveys. We selected candidates for multiply-imaged QSOs based on low levels of entropy computed from Catalina unresolved photometric time-series or Euclidean similarity to known lenses in a space defined by the wavelet power spectra of Pan-STARSS DR2 or DECaLS DR7 images, combined with multiple {\it Gaia} DR2 sources or large astrometric errors and supervised and unsupervised learning methods. We then confirmed spectroscopically some candidates with the Palomar Hale, Keck-I, and ESO/NTT telescopes. Here we report the discovery and confirmation of seven doubly-imaged QSOs and one likely double quasar. This demonstrates the potential of combining space-astrometry, even if unresolved, with low spatial-resolution photometric time-series and/or low-spatial resolution multi-band imaging to discover multiply-imaged lensed QSOs
    corecore