59 research outputs found
Mutations in the nuclear localization sequence of the Aristaless related homeobox; sequestration of mutant ARX with IPO13 disrupts normal subcellular distribution of the transcription factor and retards cell division
The electronic version of this article is the complete one and can be found online at: http://www.pathogeneticsjournal.com/content/3/1/1Background: Aristaless related homeobox (ARX) is a paired-type homeobox gene. ARX function is frequently affected by naturally occurring mutations. Nonsense mutations, polyalanine tract expansions and missense mutations in ARX cause a range of intellectual disability and epilepsy phenotypes with or without additional features including hand dystonia, lissencephaly, autism or dysarthria. Severe malformation phenotypes, such as X-linked lissencephaly with ambiguous genitalia (XLAG), are frequently observed in individuals with protein truncating or missense mutations clustered in the highly conserved paired-type homeodomain. Results: We have identified two novel point mutations in the R379 residue of the ARX homeodomain; c.1135C>A, p.R379S in a patient with infantile spasms and intellectual disability and c.1136G>T, p.R379L in a patient with XLAG. We investigated these and other missense mutations (R332P, R332H, R332C, T333N: associated with XLAG and Proud syndrome) predicted to affect the nuclear localisation sequences (NLS) flanking either end of the ARX homeodomain. The NLS regions are required for correct nuclear import facilitated by Importin 13 (IPO13). We demonstrate that missense mutations in either the N- or C-terminal NLS regions of the homeodomain cause significant disruption to nuclear localisation of the ARX protein in vitro. Surprisingly, none of these mutations abolished the binding of ARX to IPO13. This was confirmed by co-immunoprecipitation and immmuno fluorescence studies. Instead, tagged and endogenous IPO13 remained bound to the mutant ARX proteins, even in the RanGTP rich nuclear environment. We also identify the microtubule protein TUBA1A as a novel interacting protein for ARX and show cells expressing mutant ARX protein accumulate in mitosis, indicating normal cell division may be disrupted. Conclusions: We show that the most likely, common pathogenic mechanism of the missense mutations in NLS regions of the ARX homeodomain is inadequate accumulation and distribution of the ARX transcription factor within the nucleus due to sequestration of ARX with IPO13.Cheryl Shoubridge, May Huey Tan, Tod Fullston, Desiree Cloosterman, David Coman, George McGillivray, Grazia M Mancini, Tjitske Kleefstra and Jozef Géc
Phenotype and genotype of 87 patients with Mowat-Wilson syndrome and recommendations for care
Mowat-Wilson syndrome (MWS) is a rare intellectual disability/multiple congenital anomalies syndrome caused by heterozygous mutation of the ZEB2 gene. It is generally underestimated because its rarity and phenotypic variability sometimes make it difficult to recognize. Here, we aimed to better delineate the phenotype, natural history, and genotype-phenotype correlations of MWS.MethodsIn a collaborative study, we analyzed clinical data for 87 patients with molecularly confirmed diagnosis. We described the prevalence of all clinical aspects, including attainment of neurodevelopmental milestones, and compared the data with the various types of underlying ZEB2 pathogenic variations.ResultsAll anthropometric, somatic, and behavioral features reported here outline a variable but highly consistent phenotype. By presenting the most comprehensive evaluation of MWS to date, we define its clinical evolution occurring with age and derive suggestions for patient management. Furthermore, we observe that its severity correlates with the kind of ZEB2 variation involved, ranging from ZEB2 locus deletions, associated with severe phenotypes, to rare nonmissense intragenic mutations predicted to preserve some ZEB2 protein functionality, accompanying milder clinical presentations.ConclusionKnowledge of the phenotypic spectrum of MWS and its correlation with the genotype will improve its detection rate and the prediction of its features, thus improving patient care.GENETICS in MEDICINE advance online publication, 4 January 2018; doi:10.1038/gim.2017.221
Phenotype and genotype of 87 patients with Mowat–Wilson syndrome and recommendations for care
Purpose: Mowat–Wilson syndrome (MWS) is a rare intellectual disability/multiple congenital anomalies syndrome caused by heterozygous mutation of the ZEB2 gene. It is generally underestimated because its rarity and phenotypic variability sometimes make it difficult to recognize. Here, we aimed to better delineate the phenotype, natural history, and genotype–phenotype correlations of MWS. Methods: In a collaborative study, we analyzed clinical data for 87 patients with molecularly confirmed diagnosis. We described the prevalence of all clinical aspects, including attainment of neurodevelopmental milestones, and compared the data with the various types of underlying ZEB2 pathogenic variations. Results: All anthropometric, somatic, and behavioral features reported here outline a variable but highly consistent phenotype. By presenting the most comprehensive evaluati
Pseudoacromegaly
© 2018 Elsevier Inc. Individuals with acromegaloid physical appearance or tall stature may be referred to endocrinologists to exclude growth hormone (GH) excess. While some of these subjects could be healthy individuals with normal variants of growth or physical traits, others will have acromegaly or pituitary gigantism, which are, in general, straightforward diagnoses upon assessment of the GH/IGF-1 axis. However, some patients with physical features resembling acromegaly – usually affecting the face and extremities –, or gigantism – accelerated growth/tall stature – will have no abnormalities in the GH axis. This scenario is termed pseudoacromegaly, and its correct diagnosis can be challenging due to the rarity and variability of these conditions, as well as due to significant overlap in their characteristics. In this review we aim to provide a comprehensive overview of pseudoacromegaly conditions, highlighting their similarities and differences with acromegaly and pituitary gigantism, to aid physicians with the diagnosis of patients with pseudoacromegaly.PM is supported by a clinical fellowship by Barts and the London Charity. Our studies on pituitary adenomas and related conditions received support from the Medical Research Council, Rosetrees Trust and the Wellcome Trust
TheARX mutations: A frequent cause of X-linked mental retardation
International audienceThe ARX gene mutations have been demonstrated to cause different forms of mental retardation (MR). Beside FMR1, in families with X-linked mental retardation (XLMR), the ARX dysfunction was demonstrated to be among the most frequent causes of this heterogeneous group of disorders. Nevertheless, in sporadic cases of MR, ARX mutations are extremely rare. In order to evaluate the frequency of ARX mutation in XLMR, we performed mutational analysis of ARX in 165 mentally retarded probands negative for FRAXA and belonging to families in which the condition segregates as an X-linked condition. The same recurrent mutation, an in frame 24 bp insertion (c.428-451 dup (24 bp)), was identified in five patients. In one family, the mother of two affected boys was found not to carry the mutation detected in her sons. These data suggest the presence of germline mosaicism for the mutation in the mother. Our results confirm the significant contribution of ARX mutations in the etiology of MR, especially in this group of patients selected for XLMR (3%). These data, together with those reported in the literature, imply that screening for c.428-451 dup (24 bp) mutation should be recommended in all patients with suspected XLMR
Clinical Study of Two Brothers With a Novel 33 bp Duplication in the ARX Gene
Pathogenic variations of the ARX (aristaless-related homeobox) gene are associated with marked phenotypic pleiotropy. These phenotypes are X-linked neurological disorders that include brain and genital malformation and non-malformation syndromes. Typically, malformation phenotypes result from pathogenic variations that are predicted to truncate the ARX protein, or alter residues in the highly conserved homeodomain. While non-malformation phenotypes tend to be caused by pathogenic variations that are predicted to expand the first two polyalanine tracts of ARX, or alter residues outside of the homeodomain. The most common pathogenic variation of the ARX gene is a duplication of 24 bp, c.429_452 dup, which leads to an expansion of the second polyalanine tract of the ARX protein from 12 to 20 alanine residues. This pathogenic variation is associated with both sporadic and familial nonsyndromic mental retardation. Syndromic manifestations include mental retardation with hand dystonia (Partington syndrome), infantile spasms (West syndrome) and/or other epileptic seizures. Here, we report on a novel pathogenic variant of a tandem 33 bp duplication that is predicted to result in an expansion of polyalanine tract 2 in two brothers with mental retardation, epilepsy, dystonia, and the novel feature of intermittent hyperventilation. This pathogenic variation is predicted to result in a "non-homogeneous" polyalanine tract expansion that is longer than predicted expansion caused by the common 24 bp duplication. The location of the novel 33 bp duplication in the same region as the common 24 bp duplication supports this region as the ARX variation "hot spot."Michelle K. Demos, Tod Fullston, Michael W. Partington, Jozef Gécz and William T. Gibso
- …