795 research outputs found

    Direct rate measurements of eruption plumes at Augustine volcano: A problem of scaling and uncontrolled variables

    Get PDF
    The March–April 1986 eruption of Augustine Volcano, Alaska, provided an opportunity to directly measure the flux of gas, aerosol, and ash particles during explosive eruption. Most previous direct measurements of volcanic emission rates are on plumes from fuming volcanoes or on very small eruption clouds. Direct measurements during explosive activity are needed to understand the scale relationships between passive degassing or small eruption plumes and highly explosive events. Conditions on April 3, 1986 were ideal: high winds, clear visibility, moderate activity. Three measurements were made: 1) an airborne correlation spectrometer (Cospec) provided mass flux rates of SO2; 2) treated filter samples chemically characterized the plume and 3) a quartz crystal microcascade impactor provided particle size distribution. Atmospheric conditions on April 3 caused the development of a lee wave plume, which allowed us to constrain a model of plume dispersion leading to a forecast map of concentrations of SO2 at greater distances from the vent. On April 3, 1986, the emission rate of SO2 at Augustine was 24,000 t/d, one of the largest direct volcanic rate measurements yet recorded with a Cospec. The results, coupled with analytical results from samples simultaneously collected on filters, allow us to estimate HCl emissions at 10,000 t/d and ash eruption rate at 1.5×106 t/d. Based on other data, this ash eruption rate is about 1/50 of the maximum rate during the March–April activity. Filter samples show that the gas:aerosol proportions for sulfur and chlorine are about 10:1 and 4:1, respectively. By contrast, measurements of Augustine\u27s plume, together with ground-based gas sampling in July 1986 when the volcano was in a posteruptive fuming state, are 380 t/d SO2 and approximately 8000 t/d HCl with no ash emission. The observations of large Cl releases at Augustine support the Cl abundance conclusions of Johnston (1980) based on study of melt inclusions in the 1976 lavas. The results reinforce the need for more measurements during eruptions and for better understanding of scaling of volcanic emissions of various eruptive components

    'To live and die [for] Dixie': Irish civilians and the Confederate States of America

    Get PDF
    Around 20,000 Irishmen served in the Confederate army in the Civil War. As a result, they left behind, in various Southern towns and cities, large numbers of friends, family, and community leaders. As with native-born Confederates, Irish civilian support was crucial to Irish participation in the Confederate military effort. Also, Irish civilians served in various supporting roles: in factories and hospitals, on railroads and diplomatic missions, and as boosters for the cause. They also, however, suffered in bombardments, sieges, and the blockade. Usually poorer than their native neighbours, they could not afford to become 'refugees' and move away from the centres of conflict. This essay, based on research from manuscript collections, contemporary newspapers, British Consular records, and Federal military records, will examine the role of Irish civilians in the Confederacy, and assess the role this activity had on their integration into Southern communities. It will also look at Irish civilians in the defeat of the Confederacy, particularly when they came under Union occupation. Initial research shows that Irish civilians were not as upset as other whites in the South about Union victory. They welcomed a return to normalcy, and often 'collaborated' with Union authorities. Also, Irish desertion rates in the Confederate army were particularly high, and I will attempt to gauge whether Irish civilians played a role in this. All of the research in this paper will thus be put in the context of the Drew Gilpin Faust/Gary Gallagher debate on the influence of the Confederate homefront on military performance. By studying the Irish civilian experience one can assess how strong the Confederate national experiment was. Was it a nation without a nationalism

    Intraspecific Geographic Variation of Fragrances Acquired by Orchid Bees in Native and Introduced Populations

    Get PDF
    Male orchid bees collect volatiles, from both floral and non-floral sources, that they expose as pheromone analogues (perfumes) during courtship display. The chemical profile of these perfumes, which includes terpenes and aromatic compounds, is both species-specific and divergent among closely related lineages. Thus, fragrance composition is thought to play an important role in prezygotic reproductive isolation in euglossine bees. However, because orchid bees acquire fragrances entirely from exogenous sources, the chemical composition of male perfumes is prone to variation due to environmental heterogeneity across habitats. We used Gas Chromatography/Mass Spectrometry (GC/MS) to characterize the perfumes of 114 individuals of the green orchid bee (Euglossa aff. viridissima) sampled from five native populations in Mesoamerica and two naturalized populations in the southeastern United States. We recorded a total of 292 fragrance compounds from hind-leg extracts, and found that overall perfume composition was different for each population. We detected a pronounced chemical dissimilarity between native (Mesoamerica) and naturalized (U.S.) populations that was driven both by proportional differences of common compounds as well as the presence of a few chemicals unique to each population group. Despite these differences, our data also revealed remarkable qualitative consistency in the presence of several major fragrance compounds across distant populations from dissimilar habitats. In addition, we demonstrate that naturalized bees are attracted to and collect large quantities of triclopyr 2-butoxyethyl ester, the active ingredient of several commercially available herbicides. By comparing incidence values and consistency indices across populations, we identify putative functional compounds that may play an important role in courtship signaling in this species of orchid bee

    A chemical survey of exoplanets with ARIEL

    Get PDF
    Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 μm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.Peer reviewedFinal Published versio

    Rationale, design and methods for a community-based study of clustering and cumulative effects on chronic disease process and their effects on ageing: the Busselton healthy ageing study

    Get PDF
    Background: The global trend of increased life expectancy and increased prevalence of chronic and degenerative diseases will impact on health systems. To identify effective intervention and prevention strategies, greater understanding of the risk factors for and cumulative effects of chronic disease processes and their effects on function and quality of life is needed. The Busselton Healthy Ageing Study aims to enhance understanding of ageing by relating the clustering and interactions of common chronic conditions in adults to function. Longitudinal (3–5 yearly) follow-up is planned. Methods/design: Phase I (recruitment) is a cross-sectional community-based prospective cohort study involving up to 4,000 ‘Baby Boomers’ (born from 1946 to 1964) living in the Busselton Shire, Western Australia. The study protocol involves a detailed, self-administered health and risk factor questionnaire and a range of physical assessments including body composition and bone density measurements, cardiovascular profiling (blood pressure, ECG and brachial pulse wave velocity), retinal photography, tonometry, auto-refraction, spirometry and bronchodilator responsiveness, skin allergy prick tests, sleep apnoea screening, tympanometry and audiometry, grip strength, mobility, balance and leg extensor strength. Cognitive function and reserve, semantic memory, and pre-morbid intelligence are assessed. Participants provide a fasting blood sample for assessment of lipids, blood glucose, C-reactive protein and renal and liver function, and RNA, DNA and serum are stored. Clinically relevant results are provided to all participants. The prevalence of risk factors, symptoms and diagnosed illness will be calculated and the burden of illness will be estimated based on the observed relationships and clustering of symptoms and illness within individuals. Risk factors for combinations of illness will be compared with those for single illnesses and the relation of combinations of illness and symptoms to cognitive and physical function will be estimated. Discussion: This study will enable a thorough characterization of multiple disease processes and their risk factors within a community-based sample of individuals to determine their singular, interactive and cumulative effects on ageing. The project will provide novel cross-sectional data and establish a cohort that will be used for longitudinal analyses of the genetic, lifestyle and environmental factors that determine whether an individual ages well or with impairment

    Ariel: Enabling planetary science across light-years

    Get PDF

    Measurement of associated Z plus charm production in proton-proton collisions at root s=8TeV

    Get PDF
    A study of the associated production of a Z boson and a charm quark jet (Z + c), and a comparison to production with a b quark jet (Z + b), in pp collisions at a centre-of-mass energy of 8 TeV are presented. The analysis uses a data sample corresponding to an integrated luminosity of 19.7 fb(-1), collected with the CMS detector at the CERN LHC. The Z boson candidates are identified through their decays into pairs of electrons or muons. Jets originating from heavy flavour quarks are identified using semileptonic decays of c or b flavoured hadrons and hadronic decays of charm hadrons. The measurements are performed in the kinematic region with two leptons with pT(l) > 20 GeV, vertical bar eta(l)vertical bar 25 GeV and vertical bar eta(jet)vertical bar Z + c + X) B(Z -> l(+)l(-)) = 8.8 +/- 0.5 (stat)+/- 0.6 (syst) pb. The ratio of the Z+c and Z+b production cross sections is measured to be sigma(pp -> Z+c+X)/sigma (pp -> Z+b+X) = 2.0 +/- 0.2 (stat)+/- 0.2 (syst). The Z+c production cross section and the cross section ratio are also measured as a function of the transverse momentum of theZ boson and of the heavy flavour jet. The measurements are compared with theoretical predictions.Peer reviewe

    Measurement of the underlying event activity in inclusive Z boson production in proton-proton collisions at root s=13 TeV

    Get PDF
    This paper presents a measurement of the underlying event activity in proton-proton collisions at a center-of-mass energy of 13TeV, performed using inclusive Z boson production events collected with the CMS experiment at the LHC. The analyzed data correspond to an integrated luminosity of 2.1 fb(-1). The underlying event activity is quantified in terms of the charged particle multiplicity, as well as of the scalar sum of the charged particles' transverse momenta in different topological regions defined with respect to the Z boson direction. The distributions are unfolded to the stable particle level and compared with predictions from various Monte Carlo event generators, as well as with similar CDF and CMS measurements at center-of-mass energies of 1.96 and 7TeV respectively.Peer reviewe
    corecore