116 research outputs found

    Platinum-group element mineralisation in the Unst ophiolite, Shetland

    Get PDF
    The ophiolitic basic and ultrabasic rocks of the island of Unst, Shetland comprise a sequence of harzburgites, dunites, clinopyroxene-rich cumulates, and gabbro, within tectonic blocks that have been thrust over a migmatite complex during the Laxer Palaeozoic. Concentrations of chromite are found in the harzburgite and dunite, and to a small extent in the pyroxene cumulate rocks. They occur as disseminations, sometimes forming millimetre scale layers, and as more massive schlieren and pods of chromitite. Five alteration or hydrothermal events have been recognised in the ultrabasic rocks. These comprise early pervasive serpentinisation, later fracture controlled serpentinisation, veining and pervasive carbonation, minor late serpentine veining and talc-carbonate alteration controlled by fault zones. Exploration for platinum group element (PGE) mineralisation uas carried out using a combination of drainage, overburden and rock sampling. Analyses of PGE were obtained by fire assay followed by either neutron activation analysis or flameless atomic absorption spectrometry, and up to 20 other elements Here determined by X-ray fluoresence analysis. Panned concentrate samples were taken from 73 drainage sites distributed throughout the complex. Ir, the only PGE determined in all samples, showed a greater concentration in samples derived from the harzburgite unit than those from other units. Lox amplitude anomalies are present in three discrete areas in the harzburgite but the maximum level of 210 ppb Ir is associated with a sample derived from a prominent N-S zone of faulting and hydrothermal activity markedly discordant to the regional trend of layering in the harzburgite and dunite. This discordant zone, which extends for at least 7 km, is also marked by samples containing enrichments in Fe, Co, Ni, Cu and As. The highest Cr levels are associated with an area in the north of the harzburgite with no previous history of chromite working but where many locally derived pieces of chromitite float have been discovered. Relatively high Cr levels are also associated nith the area of dunite containing the greatest concentration of visible chromite and old norkings. A technique of collecting panned heavy mineral concentrates from overburden samples was adopted as a reconnaissance exploration technique after orientation sampling in the harzburgite unit at Cliff, an area with high PGE levels in chromitite and associated dunite. Systematic sampling in the Cliff area outlined a zone of coincident Pd, Pt and Rh enrichment near to but separate from the chromite workings knorrn to be enriched in PGE. In contrast the distribution of Ru was entirely different with scattered lon amplitude anomalous zones and a maximum anomaly 300m from the chromite-rich zone. Reconnaissance lines were sampled at other locations within the harzburgite, dunite and cumulate units. Lore amplitude Pd and Pt anomalies were detected xithin the dunite unit, especially in 'a traverse across the trace of the prominent N-S fault zone at Helliers Uater, adjacent to the outcrop of the cumulate unit. In general the overburden data suggest some association between PGE enrichment and enhanced levels of Ni relative to typical silicate levels apparent when expressed as the ratio Ni/MgC. Rock samples Here collected from all parts of the complex, including most of the main chromitite workings. Very high levels of all PGE occur in samples of chromitite, chromite-rich dunite and dunite from the Cliff area, with a strong positive intercorrelation between all PGE. The proportions of the various PGE are very similar to those present in deposits in major layered basic/ultrabasic complexes like Bushveld and Stillwater, irith strong relative enrichment in Pd and Pt. These PGE proportions are completely different from the Ru-Ir-0s dominant assemblage typical of ophiolitic rocks. Associated with high levels of PGE are enrichments in Ni, Cu, As, Sb and Te. There is no correlation rrith Cr and some samples of chromitite from the Cliff area contain only background levels of PGE. High to moderate levels of PGE with the same proportions of elements as the Cliff samples also occur in samples of chromitite and serpentinised dunite from the dunite unit and in samples of pyroxenite from the cumulate unit, In contrast PGE-rich samples of chromitite from the harzburgite unit near Harold's Grave have entirely different proportions of PGE with Ru and Ir in greatest abundance. This PGE distribution is similar to that in some background samples of harzburgite and closely resembles the pattern found in typical ophiolites. The PGE in the Harold's Grave samples do not exhibit the Ni enhancement noted in the Cliff PGE mineralisation. In samples from the Cliff area the platinum-group minerals (PGM) sperrylite, stibiopalladinite, hollingnorthite, laurite and possibly irarsite have been identified, mostly as grains less than 10 microns in size. In chromite-rich rocks these minerals occur Rithin chlorite haloes around chromite, in the blackened altered rims of chromite grains and in interstitial Ni-rich serpentine/carbonate intergroxths in association with pentlandite, orcellite and other Ni sulphides and arsenides, sometimes spatially related to chlorite-carbonate-magnetite veins. They also occur as fine grains Rithin magnetite rims around chromite and in magnetite or carbonate veins in dunite. The Ni sulphide/arsenide assemblage associated Rith the PGH is characteristic of serpentinisation at temperatures less than 500'C, Rell belox the range of magmatic conditions. A hydrothermal origin for the PGE mineralisation is proposed, probably related to the second phase of serpentinisation. This involved the redistribution of Ni accompanied by the introduction of As, Sb and Te probably with a StrUCtUral Control. Pre-existing concentrations of chromite may have acted as a precipitation barrier causing rich PGH deposition in the alteration haloes around chromite grains. Continuous borehole or trench sections through mineralised zones are required to assess the economic significance of the PGE mineralisation. Nevertheless the high levels of PGE attained and the evidence of xidespread occurrence of the Cliff-type PGE enrichment are favourable indications. The PGE enrichments found in the cumulate complex are of potential interest as they may originally have been of magmatic origin. Larger tonnage targets may therefore be present in this unit compared Rith the likely size of structurally-controlled mineralisation elswhere in the complex

    Excitation of Neutron, Proton and Neutron-Hole States in the (p,p') Reaction at 160 MeV and 96 MeV

    Get PDF
    This work was supported by National Science Foundation Grant PHY 76-84033 and Indiana Universit

    Transitions to Proton States in the 90-Zr(p,p') Reaction at 160 MeV

    Get PDF
    This work was supported by National Science Foundation Grant PHY 76-84033 and Indiana Universit

    Spin-Orbit Effects on the Shapes of Cross Sections in the 90-Zr(p,p') Reaction at 160 MeV

    Get PDF
    This work was supported by National Science Foundation Grants PHY 76-84033A01, PHY 78-22774, and Indiana Universit

    'Education, education, education' : legal, moral and clinical

    Get PDF
    This article brings together Professor Donald Nicolson's intellectual interest in professional legal ethics and his long-standing involvement with law clinics both as an advisor at the University of Cape Town and Director of the University of Bristol Law Clinic and the University of Strathclyde Law Clinic. In this article he looks at how legal education may help start this process of character development, arguing that the best means is through student involvement in voluntary law clinics. And here he builds upon his recent article which argues for voluntary, community service oriented law clinics over those which emphasise the education of students

    The performance of the jet trigger for the ATLAS detector during 2011 data taking

    Get PDF
    The performance of the jet trigger for the ATLAS detector at the LHC during the 2011 data taking period is described. During 2011 the LHC provided proton–proton collisions with a centre-of-mass energy of 7 TeV and heavy ion collisions with a 2.76 TeV per nucleon–nucleon collision energy. The ATLAS trigger is a three level system designed to reduce the rate of events from the 40 MHz nominal maximum bunch crossing rate to the approximate 400 Hz which can be written to offline storage. The ATLAS jet trigger is the primary means for the online selection of events containing jets. Events are accepted by the trigger if they contain one or more jets above some transverse energy threshold. During 2011 data taking the jet trigger was fully efficient for jets with transverse energy above 25 GeV for triggers seeded randomly at Level 1. For triggers which require a jet to be identified at each of the three trigger levels, full efficiency is reached for offline jets with transverse energy above 60 GeV. Jets reconstructed in the final trigger level and corresponding to offline jets with transverse energy greater than 60 GeV, are reconstructed with a resolution in transverse energy with respect to offline jets, of better than 4 % in the central region and better than 2.5 % in the forward direction

    Measurement of the View the tt production cross-section using eμ events with b-tagged jets in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    This paper describes a measurement of the inclusive top quark pair production cross-section (σtt¯) with a data sample of 3.2 fb−1 of proton–proton collisions at a centre-of-mass energy of √s = 13 TeV, collected in 2015 by the ATLAS detector at the LHC. This measurement uses events with an opposite-charge electron–muon pair in the final state. Jets containing b-quarks are tagged using an algorithm based on track impact parameters and reconstructed secondary vertices. The numbers of events with exactly one and exactly two b-tagged jets are counted and used to determine simultaneously σtt¯ and the efficiency to reconstruct and b-tag a jet from a top quark decay, thereby minimising the associated systematic uncertainties. The cross-section is measured to be: σtt¯ = 818 ± 8 (stat) ± 27 (syst) ± 19 (lumi) ± 12 (beam) pb, where the four uncertainties arise from data statistics, experimental and theoretical systematic effects, the integrated luminosity and the LHC beam energy, giving a total relative uncertainty of 4.4%. The result is consistent with theoretical QCD calculations at next-to-next-to-leading order. A fiducial measurement corresponding to the experimental acceptance of the leptons is also presented

    Search for strong gravity in multijet final states produced in pp collisions at √s=13 TeV using the ATLAS detector at the LHC

    Get PDF
    A search is conducted for new physics in multijet final states using 3.6 inverse femtobarns of data from proton-proton collisions at √s = 13TeV taken at the CERN Large Hadron Collider with the ATLAS detector. Events are selected containing at least three jets with scalar sum of jet transverse momenta (HT) greater than 1TeV. No excess is seen at large HT and limits are presented on new physics: models which produce final states containing at least three jets and having cross sections larger than 1.6 fb with HT > 5.8 TeV are excluded. Limits are also given in terms of new physics models of strong gravity that hypothesize additional space-time dimensions

    Search for TeV-scale gravity signatures in high-mass final states with leptons and jets with the ATLAS detector at sqrt [ s ] = 13TeV

    Get PDF
    A search for physics beyond the Standard Model, in final states with at least one high transverse momentum charged lepton (electron or muon) and two additional high transverse momentum leptons or jets, is performed using 3.2 fb−1 of proton–proton collision data recorded by the ATLAS detector at the Large Hadron Collider in 2015 at √s = 13 TeV. The upper end of the distribution of the scalar sum of the transverse momenta of leptons and jets is sensitive to the production of high-mass objects. No excess of events beyond Standard Model predictions is observed. Exclusion limits are set for models of microscopic black holes with two to six extra dimensions
    corecore