65 research outputs found
Recommended from our members
Using Airborne Light Detection and Ranging as a Sampling Tool for Estimating Forest Biomass Resources in the Upper Tanana Valley of Interior Alaska
Airborne laser scanning, collected in a sampling mode, has the potential to be a valuable tool for estimating the biomass resources available to support bioenergy production in rural communities of interior Alaska. In this study, we present a methodology for estimating forest biomass over a 201,226-ha area (of which 163,913 ha are forested) in the upper Tanana valley of interior Alaska using a combination of 79 field plots and high-density airborne light detection and ranging (LiDAR) collected in a sampling mode along 27 single strips (swaths) spaced approximately 2.5 km apart. A model-based approach to estimating total aboveground biomass for the area is presented. Although a design-based sampling approach (based on a probability sample of field plots) would allow for stronger inference, a model-based approach is justified when the cost of obtaining a probability sample is prohibitive. Using a simulation-based approach, the proportion of the variability associated with sampling error and modeling error was assessed. Results indicate that LiDAR sampling can be used to obtain estimates of total biomass with an acceptable level of precision (8.1 ± 0.7 [8%] teragrams [total ± SD]), with sampling error accounting for 58% of the SD of the bootstrap distribution. In addition, we investigated the influence of plot location (i.e., GPS) error, plot size, and field-measured diameter threshold on the variability of the total biomass estimate. We found that using a larger plot (1/30 ha versus 1/59 ha) and a lower diameter threshold (7.6 versus 12.5 cm)significantly reduced the SD of the bootstrap distribution (by approximately 20%), whereas larger plot location error (over a range from 0 to 20 m root mean square error) steadily increased variability at both plot sizes.Keywords: biomass, sampling, LiDAR, forest inventoryKeywords: biomass, sampling, LiDAR, forest inventor
Recommended from our members
Prediction of Forest Attributes with Field Plots, Landsat, and a Sample of Lidar Strips: A Case Study on the Kenai Peninsula, Alaska
In this study we demonstrate that sample strips of lidar in
combination with Landsat can be used to predict forest attributes
more precisely than from Landsat alone. While lidar
and Landsat can each be used alone in vegetation mapping,
the cost of wall to wall lidar may exceed users' financial
resources, and Landsat may not support the desired level of
prediction precision. We compare fitted linear models and
k nearest neighbors (kNN) methods to link field measurements,
lidar, and Landsat. We also compare 900 m² and 8,100
m² resolutions to link lidar to Landsat. An approach with
lidar and Landsat together reduced estimates of residual
variability for biomass by up to 36 percent relative to using
Landsat alone. Linear models generally performed better
than kNN approaches, and when linking lidar to Landsat,
using 8,100 m² resolution performed better than 900 m²
Recommended from our members
Using multilevel remote sensing and ground data to estimate forest biomass resources in remote regions: a case study in the boreal forests of interior Alaska
The emergence of a new generation of remote sensing and geopositioning technologies, as well as increased capabilities in image processing, computing, and inferential techniques, have enabled the development and implementation of increasingly efficient and cost-effective multilevel sampling designs for forest inventory. In this paper, we (i) describe the conceptual basis of multilevel sampling, (ii) provide a detailed review of several previously implemented multilevel inventory designs, (iii) describe several important technical considerations that can influence the efficiency of a multilevel sampling design, and (iv) demonstrate the application of a modern multilevel sampling approach for estimating the forest biomass resources in a remote area of interior Alaska. This approach utilized a combination of ground plots, lidar strip sampling, satellite imagery (multispectral and radar), and classified land cover information. The variability in the total biomass estimate was assessed using a bootstrapping approach. The results indicated only marginal improvement in the precision of the total biomass estimate when the lidar sample was post-stratified using the classified land cover layer (reduction in relative standard error from 7.3% to 7.0%), whereas there was a substantial improvement in the precision when the estimate was based on the biomass map derived via nearest-neighbor imputation (reduction in relative standard error from 7.3% to 5.1%).This is the publisher’s final pdf. The published article is copyrighted by the Canadian Aeronautics and Space Institute and can be found at: http://www.casi.ca/cdn-journal-of-remote-sensing
Recommended from our members
Comparing statistical techniques to classify the structure of mountain forest stands using CHM-derived metrics in Trento province (Italy)
In some cases a canopy height model (CHM) is the only available source of forest height information. For these cases it is important to understand the predictive power of CHM data for forest attributes. In this study we examined the use of lidar-derived CHM metrics to predict forest structure classes according to the amount of basal area present in understory, midstory, and overstory trees. We evaluated two approaches to predict size-based forest classifications: in the first, we attempted supervised classification with both linear discriminant analysis (LDA) and random forest (RF); in the second, we predicted basal areas of lower, mid, and upper canopy trees from CHM-derived variables by k-nearest neighbour imputation (k-NN) and parametric regression, and then classified observations based on their predicted basal areas. We used leave-one-out cross-validation to evaluate our ability to predict forest structure classes from CHM data and in the case of prediction-based classification approach we look at the performances in predicting basal area. The strategies proved moderately successful with a best overall classification accuracy of 41% in the case of LDA. In general, we were most successful in predicting the basal areas of small and large trees (R² respectively of 71% and 69% in the case of k-NN imputation).Keywords: lidar, linear discriminant analysis, forest structure, parametric regression, random forests, k-nearest neighbour imputatio
Recommended from our members
Model-Assisted Forest Yield Estimation with Light Detection and Ranging
Previous studies have demonstrated that light detection and ranging (LiDAR)-derived variables can be used to model forest yield variables, such as biomass, volume, and number of stems. However, the next step is underrepresented in the literature: estimation of forest yield with appropriate confidence intervals. It is of great importance that the procedures required for conducting forest inventory with LiDAR and the estimation precision of such procedures are sufficiently documented to enable their evaluation and implementation by land managers. In this study, we demonstrated the regression estimator, a model-assisted estimator (approximately design-unbiased), using LiDAR-derived variables for estimation of total forest yield. The LiDAR-derived variables are statistics associated with vegetation height and cover. The estimation procedure requires complete coverage of the forest with LiDAR and a random sample of precisely georeferenced field measurement plots. Regression estimation relies on sample-based ordinary least squares (OLS) regression models relating forest yield and LiDAR-derived variables. Estimation was performed using the OLS models and LiDAR-derived variables for the entire population. Regression estimates of basal area, volume, stand density, and biomass were much more precise than simple random sampling estimates (design effects were 0.25, 0.24, 0.44, and 0.27, respectively).Keywords: Model-assisted, Regression estimation, Design-based LiDAR, Forest Inventor
Supercurrent interference in HgTe Josephson junctions
Wires made of topological insulators (TI) are a promising platform for searching for Majorana bound states. These states can be probed by analyzing the fractional ac Josephson effect in Josephson junctions with the TI wire as a weak link. An axial magnetic field can be used to tune the system from trivial to topologically nontrivial. Here we investigate the oscillations of the supercurrent in such wire Josephson junctions as a function of the axial magnetic field strength and different contact transparencies. Although the current flows on average parallel to the magnetic field we observe h/2e, h/4e- and even h/8e-periodic oscillations of the supercurrent in samples with lower contact transparencies. Corresponding tight-binding transport simulations using a Bogoliubov-de Gennes model Hamiltonian yield the supercurrent through the Josephson junctions, showing in particular the peculiar h/4e-periodic oscillations observed in experiments. A further semiclassical analysis based on Andreev-reflected trajectories connecting the two superconductors allows us to identify the physical origin of these oscillations. They can be related to flux-enclosing paths winding around the TI-nanowire, thereby highlighting the three-dimensional character of the junction geometry compared to common planar junctions
Multi-messenger observations of a binary neutron star merger
On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches
Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its 'Minimal Information for Studies of Extracellular Vesicles', which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly
Recommended from our members
Estimation and modeling of selected forest metrics with lidar and Landsat
Lidar is able to provide height and cover information which can be used to estimate selected forest attributes precisely. However, for users to evaluate whether the additional cost and complication associated with using Lidar merits adoption requires that the protocol to use lidar be thoroughly described and that a basis for selection of design parameters such as number of field plots and lidar pulse density be described. In our first analysis, we examine these issues by looking at the effects of pulse density and sample size on estimation when wall-to-wall lidar is used with a regression estimator. The effects were explored using resampling simulations. We examine both the effects on precision, and on the validity of inference. Pulse density had almost no effect on precision for the range examined, from 3 to .0625 pulses / m². The effect of sample size on estimator precision was roughly in accordance with the behavior indicated by the variance estimator, except that for small samples the variance estimator had positive bias (the variance estimates were too small), compromising the validity of inference. In future analyses we plan to provide further context for wall-to-wall lidar-assisted estimation. While there is a lot of literature on modeling, there is limited information on how lidar-assisted approaches compare to existing methods, and what variables can or cannot be acquired, or may be acquired with reduced confidence. We expand our investigation of estimation in our second analysis by examining lidar obtained in a sampling mode in combination with Landsat. In this case we make inference about the feasibility of a lidar-assisted estimation strategy by contrasting its variance estimate with variance estimates from a variety of other sampling designs and estimators. Of key interest was how the precision of a two-stage estimator with lidar strips compared with a plot-only estimator from a simple random sampling design. We found that because the long and narrow lidar strips incorporate much of the landscape variability, if the number of lidar strips was increased from 7 to 15 strips, the precision of estimators with lidar can exceed that of estimators applied to plot-only SRS data for a much larger number of plots. Increasing the number of lidar strips is considered to be highly viable since the costs of field plots can be quite expensive in Alaska, often exceeding the cost of a lidar strip. A Landsat-assisted approach used for either an SRS or a two-stage sample was also found to perform well relative to estimators for plot-only SRS data. This proved beneficial when we combined lidar and Landsat-assisted regression estimators for two-stage designs using a composite estimator. The composite estimator yielded much better results than either estimator used alone. We did not assess the effects of changing the number of lidar strips in combination with using a composite estimator, but this is an important analysis we plan to perform in a future study.
In our final analysis we leverage the synergy between lidar and Landsat to improve the explanatory power of auxiliary Landsat using a multilevel modeling strategy. We also incorporate a more sophisticated approach to processing Landsat which reflects temporal trends in individual pixels values. Our approach used lidar as an intermediary step to better match the spatial resolution of Landsat and increase the proportion of area overlapped between measurement units for the different sources of data. We developed two separate approaches for two different resolutions of data (30 m and 90 m) using multiple modeling alternatives including OLS and k nearest neighbors (KNN), and found that both resolution and the modeling approach affected estimates of residual variability, although there was no combination of model types which was a clear winner for all responses. The modeling strategies generally fared better for the 90 m approaches, and future analyses will examine a broader range of resolutions. Fortunately the approaches used are fairly flexible and there is nothing prohibiting a 1000 m implementation. In the future we also plan to look at using a more sophisticated Landsat time-series approach. The current approach essentially dampened the noise in the temporal trend for a pixel, but did not make use of information in the trend such as slope or indications of disturbance – which may provide additional explanatory power. In a future study we will also incorporate a multilevel modeling into estimation or mapping strategies and evaluate the contribution of the multilevel modeling strategy relative to alternate approaches
- …