114 research outputs found

    Identifying Opportunities for Aligning Production and Consumption in the U.S. Fisheries by Considering Seasonality

    Get PDF
    Seasonality is a natural feature of wild caught fisheries that introduces variation in food supply, and which often is amplified by fisheries management systems. Seasonal timing of landings patterns and linkages to consumption patterns can have a potentially strong impact on income for coastal communities as well as import patterns. This study characterizes the relationship between seasonality in seafood production and consumption in the United States by analyzing monthly domestic fisheries landings and imports and retail sales of farmed and wild seafood from 2017 to 2019. Analyses were conducted for total seafood sales, by product form, by species group, and by region of the United States. The data reveal strong seasonal increases in consumption around December and March. Seasonal increases in consumption in Spring and Summer occurred in parallel with domestic fishing production. Domestic landings vary by region, but most regions have peak fishing seasons between May and October. Alaska has the largest commercial fishery in the United States and seasonal peaks in Alaska (July/August, February/March) strongly influence seasonality in national landings. Misalignment between domestic production and consumption in some seasons and species groups creates opportunities for imports to supplement demand and lost opportunities for domestic producers.publishedVersio

    Predominant Asymmetrical Stem Cell Fate Outcome Limits the Rate of Niche Succession in Human Colonic Crypts.

    Get PDF
    Stem cell (SC) dynamics within the human colorectal crypt SC niche remain poorly understood, with previous studies proposing divergent hypotheses on the predominant mode of SC self-renewal and the rate of SC replacement. Here we use age-related mitochondrial oxidative phosphorylation (OXPHOS) defects to trace clonal lineages within human colorectal crypts across the adult life-course. By resolving the frequency and size distribution of OXPHOS-deficient clones, quantitative analysis shows that, in common with mouse, long-term maintenance of the colonic epithelial crypt relies on stochastic SC loss and replacement mediated by competition for limited niche access. We find that the colonic crypt is maintained by ~5 effective SCs. However, with a SC loss/replacement rate estimated to be slower than once per year, our results indicate that the vast majority of individual SC divisions result in asymmetric fate outcome. These findings provide a quantitative platform to detect and study deviations from human colorectal crypt SC niche homeostasis during the process of colorectal carcinogenesis.Wellcome Trus

    Genome-wide linkage screen for testicular germ cell tumour susceptibility loci

    Get PDF
    A family history of disease is a strong risk factor for testicular germ cell tumour (TGCT). In order to identify the location of putative TGCT susceptibility gene(s) we conducted a linkage search in 237 pedigrees with two or more cases of TGCT. One hundred and seventy-nine pedigrees were evaluated genome-wide with an average inter-marker distance of 10 cM. An additional 58 pedigrees were used to more intensively investigate several genomic regions of interest. Genetic linkage analysis was performed with the ALLEGRO software using two model-based parametric analyses and a non-parametric analysis. Six genomic regions on chromosomes 2p23, 3p12, 3q26, 12p13-q21, 18q21-q23 and Xq27 showed heterogeneity LOD (HLOD) scores of greater than 1, with a maximum HLOD of 1.94 at 3q26. Genome-wide simulation studies indicate that the observed number of HLOD peaks greater than one does not differ significantly from that expected by chance. A TGCT locus at Xq27 has been previously reported. Of the 237 pedigrees examined in this study, 66 were previously unstudied at Xq27, no evidence for linkage to this region was observed in this new pedigree set. Overall, the results indicate that no single major locus can account for the majority of the familial aggregation of TGCT, and suggests that multiple susceptibility loci with weak effects contribute to the diseas

    Neonatal infections: Case definition and guidelines for data collection, analysis, and presentation of immunisation safety data.

    Get PDF
    Maternal vaccination is an important area of research and requires appropriate and internationally comparable definitions and safety standards. The GAIA group, part of the Brighton Collaboration was created with the mandate of proposing standardised definitions applicable to maternal vaccine research. This study proposes international definitions for neonatal infections. The neonatal infections GAIA working group performed a literature review using Medline, EMBASE and the Cochrane collaboration and collected definitions in use in neonatal and public health networks. The common criteria derived from the extensive search formed the basis for a consensus process that resulted in three separate definitions for neonatal blood stream infections (BSI), meningitis and lower respiratory tract infections (LRTI). For each definition three levels of evidence are proposed to ensure the applicability of the definitions to different settings. Recommendations about data collection, analysis and presentation are presented and harmonized with the Brighton Collaboration and GAIA format and other existing international standards for study reporting

    Differential flow improvements after valve replacements in bicuspid aortic valve disease: a cardiovascular magnetic resonance assessment

    Get PDF
    Background Abnormal aortic flow patterns in bicuspid aortic valve disease (BAV) may be partly responsible for the associated aortic dilation. Aortic valve replacement (AVR) may normalize flow patterns and potentially slow the concomitant aortic dilation. We therefore sought to examine differences in flow patterns post AVR. Methods Ninety participants underwent 4D flow cardiovascular magnetic resonance: 30 BAV patients with prior AVR (11 mechanical, 10 bioprosthetic, 9 Ross procedure), 30 BAV patients with a native aortic valve and 30 healthy subjects. Results The majority of subjects with mechanical AVR or Ross showed normal flow pattern (73% and 67% respectively) with near normal rotational flow values (7.2 ± 3.9 and 10.6 ± 10.5 mm2/ms respectively vs 3.8 ± 3.1 mm2/s for healthy subjects; both p > 0.05); and reduced in-plane wall shear stress (0.19 ± 0.13 N/m2for mechanical AVR vs. 0.40 ± 0.28 N/m2 for native BAV, p  0.05), and a similar pattern for wall shear stress. Data before and after AVR (n = 16) supported these findings: mechanical AVR showed a significant reduction in rotational flow (30.4 ± 16.3 → 7.3 ± 4.1 mm2/ms; p < 0.05) and in-plane wall shear stress (0.47 ± 0.20 → 0.20 ± 0.13 N/m2; p < 0.05), whereas these parameters remained similar in the bioprosthetic AVR group. Conclusions Abnormal flow patterns in BAV disease tend to normalize after mechanical AVR or Ross procedure, in contrast to the remnant abnormal flow pattern after bioprosthetic AVR. This may in part explain different aortic growth rates post AVR in BAV observed in the literature, but requires confirmation in a prospective study

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world\u27s major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (−0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km² resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e., offset) between in-situ soil temperature measurements, based on time series from over 1200 1-km² pixels (summarized from 8500 unique temperature sensors) across all the world’s major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in-situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Genome-wide association identifies nine common variants associated with fasting proinsulin levels and provides new insights into the pathophysiology of type 2 diabetes.

    Get PDF
    OBJECTIVE: Proinsulin is a precursor of mature insulin and C-peptide. Higher circulating proinsulin levels are associated with impaired β-cell function, raised glucose levels, insulin resistance, and type 2 diabetes (T2D). Studies of the insulin processing pathway could provide new insights about T2D pathophysiology. RESEARCH DESIGN AND METHODS: We have conducted a meta-analysis of genome-wide association tests of ∼2.5 million genotyped or imputed single nucleotide polymorphisms (SNPs) and fasting proinsulin levels in 10,701 nondiabetic adults of European ancestry, with follow-up of 23 loci in up to 16,378 individuals, using additive genetic models adjusted for age, sex, fasting insulin, and study-specific covariates. RESULTS: Nine SNPs at eight loci were associated with proinsulin levels (P < 5 × 10(-8)). Two loci (LARP6 and SGSM2) have not been previously related to metabolic traits, one (MADD) has been associated with fasting glucose, one (PCSK1) has been implicated in obesity, and four (TCF7L2, SLC30A8, VPS13C/C2CD4A/B, and ARAP1, formerly CENTD2) increase T2D risk. The proinsulin-raising allele of ARAP1 was associated with a lower fasting glucose (P = 1.7 × 10(-4)), improved β-cell function (P = 1.1 × 10(-5)), and lower risk of T2D (odds ratio 0.88; P = 7.8 × 10(-6)). Notably, PCSK1 encodes the protein prohormone convertase 1/3, the first enzyme in the insulin processing pathway. A genotype score composed of the nine proinsulin-raising alleles was not associated with coronary disease in two large case-control datasets. CONCLUSIONS: We have identified nine genetic variants associated with fasting proinsulin. Our findings illuminate the biology underlying glucose homeostasis and T2D development in humans and argue against a direct role of proinsulin in coronary artery disease pathogenesis

    Impact of Optimized Breastfeeding on the Costs of Necrotizing Enterocolitis in Extremely Low Birthweight Infants

    Get PDF
    To estimate risk of NEC for ELBW infants as a function of preterm formula and maternal milk (MM) intake and calculate the impact of suboptimal feeding on NEC incidence and costs
    corecore