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Abstract We investigate the direct relationship

between detailed urban land cover classes, derived from

fine resolution QuickBird satellite data, and land surface

temperatures (Celsius), generated from ASTER imagery,

over Phoenix, Arizona. Using daytime and nighttime

temperatures in both winter and summer and all obser-

vation points (n = 11,025), we develop linear, non-

linear and multiple regression models to explore the

relationship. Conventional wisdom suggests that all

urban features result in increased temperatures. Rather,

our results show that a mass of buildings is not necessarily

or holistically responsible for extreme heat in desert

cities. It is the construction of other impervious dark

surfaces (i.e., asphalt roads) associated with buildings

that result in extreme heat. Moreover, our results suggest

that buildings, especially commercial buildings with high

albedo roofs, actually reduce temperatures. The addition

of trees and shrubs, as opposed to grass, around buildings

can further mitigate extreme heat by providing more

cooling during the summer and increasing nighttime

temperatures in the winter. In conclusion, the composi-

tional design of and avoidance of dark impervious

materials in desert cities help mitigate extreme temper-

atures. It is important to note, however, that design

choices that reduce extreme heat must be made within the

broader context of tradeoffs and unintended conse-

quences to ensure the sustainability of these cities.
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Introduction

The urban heat island (UHI) is the increase in mini-

mum nighttime temperatures in an urban area com-

pared to the surrounding non-urbanized region (Brazel

et al. 2000). The UHI effect is caused by the increased

heat storage capacity of urban materials (e.g., asphalt

and concrete) and the anthropogenic heat discharge of

human activities (Hucheon et al. 1967; Olfe and Lee

1971; Oke 1973). The UHI effect is being studied

extensively to understand local climate patterns,

human health, human activities, urban water, and

energy use (Oke 1981, 1982; Huang et al. 1987; Sailor

1995; Spronken-Smith and Oke 1998; Carlson and

Arthur 2000; Bonan 2002; Brabec et al. 2002; EPA

2003; Weng et al. 2004; Grossman-Clarke et al. 2005;

Jenerette et al. 2007). Remotely sensed data provide an

indirect approach to document the UHI and to

correlate temperature to land cover (Carlson et al.
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1977; Quattrochi and Ridd 1994; Wilson et al. 2003;

Weng et al. 2004; Hung et al. 2006; Xian 2006). The

challenge with using remotely sensed data is that the

classified data are typically generalized land cover

categories and vegetation indices generated from low-

resolution satellite sensors. This results in limited

understanding in understanding the specific drivers of

the UHI. In contrast, high-spatial resolution data (e.g.,

\5 m pixel size) can extract detailed urban and

suburban information from remotely sensed data

(Jensen and Cowen 1999).

The goal of this study is to investigate the direct

relation between detailed urban land-cover classes

derived from QuickBird 2.4 m data and surface

temperature from ASTER data for Phoenix, Arizona.

We have selected two scenes per season to reflect

daytime and nighttime differences in surface temper-

atures over a 178 km2 area to increase our understand-

ing of the relationship between surface temperatures

and urban materials. Using high-resolution imagery,

we overcome previous challenges and understand

more about the seasonal, diurnal, spatial and structural

dynamics associated with the drivers and conse-

quences of UHI. This enables us to better understand

how anthropogenic features and natural landscapes

influence urban warming in a rapidly urbanizing desert

city.

Remote sensing and UHI

Temperature

Scientists quantify and monitor the UHI effect through

a variety of direct and indirect methods, numerical

modeling approaches and estimates based on empir-

ical models. In situ measurements of air and surface

temperature have traditionally been used to explore

the surface energy balance and its impact on urban

warming (Dousset 1989; Stoll and Brazel 1992; Lee

1993). However, these measures typically cover small

geographic areas with a limited number of point

observations instead of continuous records. Urban

planners have suggested various strategies for address-

ing the UHI effect such as high albedo rooftops,

reduction of impervious surfaces and increasing

vegetation density (Gober et al. 2010) based on

surface temperature observations. Details on mitiga-

tion measures, however, are difficult to come by over

large geographic areas. Moreover, point measure-

ments of air and surface temperatures may not

represent warming over a sizable area in the context

of the interactive nature of landscapes within complex

urban settings.

Due to the small scale or estimated nature of in situ

measurements, there is a good deal of uncertainty

associated with the impact that other factors such as

neighboring land covers, prevailing winds and wind

direction have on urban energy balances. Thermal

imagery has complemented in situ measurements by

providing spatial richness across multiple temporal and

spatial scales and in vertical directions. Hung et al.

(2006) used land surface temperature obtained from

Terra Moderate Resolution Imaging Spectroradiome-

ter (MODIS) data to observe spatial patterns of UHI in

18 tropical and temperate Asian mega cities. Zhang

et al. (1998) proposed a semi-theoretical method to

estimate surface heat fluxes using Landsat TM satellite

thermal-infrared data in conjunction with observa-

tional meteorological data and field measurements.

Voogt and Oke (1997) and Voogt (2000) used direct

and indirect thermal directional variation (thermal

anisotropy) to estimate spatially weighted tempera-

tures in both vertical and horizontal directions and

show that the vertical structure and not just the surface

area contribute to the urban sensible heat flux. Zhou

et al. (2011) used land fragmentation indices to explore

the spatial configuration of land cover types and

surface temperatures in the Gwynns Falls watershed in

Baltimore.

Land cover characteristics

To effectively mitigate the UHI effect, we need to

quantify the specific drivers of urban heat retention

within individual urban areas including the detailed

composition and organization of the materials. Mate-

rials include varying amounts of plastic, metal, rubber,

glass, cement, wood, shingle, sand, gravel, brick,

stone, soil, vegetation and water (Sailor 1995; Arnfield

2003). The differential heating and cooling of these

materials and their composition within urban struc-

tures alters the surface energy budget.

While data sources vary, overall findings show a

strong relationship between impervious surfaces and

higher surface temperatures as well as vegetated

surfaces and cooler surface temperatures (Zhang

et al. 1998; Hung et al. 2006). Dousset and Gourmelon
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(2003) found that business and industrial surfaces

added significantly to the urban heat island effect in

comparison to natural land covers, which tended to

have a cooling effect. Buyantuyev and Wu (2010)

found fractions of paved surface (as a nighttime

indicator) and vegetation (as a daytime indicator)

influence the spatio-temporal variation of surface tem-

peratures. Wilson et al. (2003) explored differences in

mean radiant surface temperatures and Normalized

Difference Vegetation Index (NDVI) values generated

from different types of zoning using Landsat

Enhanced Thematic Mapper (ETM?) data, and

reported that both variables were related to differences

in zoning.

Other studies document UHI using more specific

land use categories (e.g., residential, commercial,

industrial). Li et al. (2011) explored UHI in Shanghai,

China and reported that residential land-use areas with

low- to middle-rise buildings and low vegetation cover

have higher temperatures than areas with high-rise

buildings and higher vegetation, concluding that urban

landscape configuration influences UHI. However,

land use commonly associated with human activities

or economic functions generally contains many

different types of land covers (Jensen 2004; Lillesand

et al. 2008) that may have different levels or forms of

influences on urban climate. For example, residential

land use includes roads, houses, grass, shrubs, trees,

bare soil, driveways, swimming pools, parking lots

and sidewalks, each likely to be composed of different

types of surface materials. This is true for other urban

land uses such as commercial, industrial and recrea-

tional land uses as well. Voogt and Oke (2003)

suggested that there is a need to use more fundamental

surface descriptors rather than using qualitatively

based land use data.

Fig. 1 Study area
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Refining the data and the land surface characteris-

tics to enable more detailed analysis of the UHI effect

continues to progress. Owen et al. (1998), in an

attempt to analyze regional-scale climate impacts of

urbanization, found that soil moisture from vegetation

and its impacts on urban heat were poorly understood.

They developed an empirical method to estimate the

fractional cover and surface moisture availability from

the surface temperature and NDVI that incorporates

the influence of local land cover surrounding urban-

ized pixels. Studies such as these depend on either

high-resolution data sources such as Quickbird or data

processing approaches such as sub-pixel analysis to

provide empirical information on the land surface

characteristics. There are studies that have used sub-

pixel analysis of medium to coarse-resolution imagery

(e.g., Landsat; MODIS; NOAA-AVHRR) to quantify

land cover fractions. Sub-pixel analysis can provide a

relative abundance of surface material information,

especially when dealing with medium to coarse spatial

resolution satellite sensor images. There are limita-

tions and uncertainties associated with sub-pixel

analysis (Myint 2006) when attempting to identify a

few key surface covers or endmembers that are not

commonly identifiable in coarser resolution data (e.g.,

soil, impervious, vegetation).

Study area

The study area covers approximately 178 km2 of

central Phoenix (Fig. 1; upper left longitude 112� 70 4500

Fig. 2 ASTER temperature

(degree Celsius) images:

a Nighttime temperature

acquired on 22 August 2005;

b Nighttime temperature

acquired on 5 March 2007;

c Daytime temperature

acquired on 27 February

2007; d Daytime

temperature acquired on

6 July 2005
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and latitude 33� 330 1500, lower right longitude 112� 000

5000 and latitude 33� 260 200). The study area includes

urban segments (commercial, industrial and residen-

tial) and undeveloped regions (grassland, unmanaged

soil, desert landscape and open water), giving a

diversity of urban land use and land cover classes.

The Phoenix metropolitan area was selected because

of its location in a desert environment that faces

serious water consumption, energy use and heat-

related health problems, which are potentially linked

to the UHI effect. The U.S. Census Bureau reports that

the Phoenix metropolitan area is home to nearly

1.6 million people (U.S. Census Bureau 2012).

The temperature in Phoenix commonly exceeds 100

�F (38 �C) on an average of 110 days during the year,

including most days from late May through early

September, and reaches 110 �F (43 �C) or higher an

average of 18 days. The average annual total rainfall

measured at Phoenix Sky Harbor International Airport is

about 210.82 mm (U.S. Department of Commerce 2010).

Fig. 3 Research design
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Data sources

The two data sources for this study are a QuickBird

image to classify land cover and ASTER images that

provide surface temperature during different seasons

and different times of the day. The QuickBird image,

dated 29 May 2007, has a 2.4 m spatial resolution with

4 channels: blue—B1 (0.45–0.52 lm), green—B2

(0.52–0.60 lm), red—B3 (0.63–0.69 lm), and near

infrared—B4 (0.76–0.90 lm) and the radiometric

resolution of the dataset is 16 bit. The image size is

5,339 rows 9 5,570 columns to cover the study area at

this fine spatial resolution.

We also acquired Advanced Spaceborne Thermal

Emission and Reflection Radiometer (ASTER) images

from 6 July 2005, 22 August 2005, 27 February 2007,

and 5 March 2007 to calculate land surface temper-

atures (Fig. 2a–d). Two scenes per season were used to

reflect seasonal and daytime and nighttime differences

in surface temperatures. ASTER provides advantages

over other thermal sensors because it supplies more

bands in the short-wave infrared portion of the

Fig. 4 a A subset of

QuickBird image over the

study area; b output map of

the same area
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electromagnetic spectrum (SWIR) and thermal infra-

red (TIR) (6 bands in SWIR and 5 bands in TIR) while

retaining adequate spatial resolution in the visible

bands.

Methods

The research framework is illustrated in Fig. 3. Our

basic methodology includes acquiring and classifying

our remotely sensed images, spatially correlating the

land cover fractions per surface temperature, and

developing regression models with surface tempera-

ture as the dependent variable. The specifics of each

step are described below.

Image classification and surface temperatures

We employed an object-oriented classification approach

on the Quickbird image using decision rules and nearest

neighbor classifier to extract detailed urban land cover

classes with Definiens Developer 7.0 software (Benz

et al. 2004; Walter 2004). A subset of QuickBird image

over the study area and its output map are shown in

Fig. 4. The original urban land cover categories

identified included buildings, unmanaged soil, grass,

other impervious surfaces (hereafter impervious), trees

and shrubs, swimming pools and other water bodies

(lakes, ponds and canals). These categories were

selected because of ongoing studies of the urban energy

budget that require these land cover classes (Grimmond

and Oke 2002). The object-oriented classifier in our

study achieved an overall accuracy of 90.4 % (Myint

et al. 2011), which is well above the minimum mapping

accuracy of 85.0 % required for most resource man-

agement applications (Anderson et al. 1976; Towns-

hend 1981). For our study, we combined swimming

pools (majority of water sources in the study area) and

other water bodies (minimal water sources) to create a

general water category reducing the total number of

classes from seven to six.

Since there are two types of buildings (residential

and commercial) in the study area, we split commer-

cial and residential land use types in the study area

using a heads-up digitizing option. We overlaid the

land use type map onto the detailed urban land cover

map to extract these two types of buildings. This

allowed us to examine how each subclass of the

building category influences surface temperatures

Per pixel surface temperature was calculated from

ASTER’s five thermal infrared channels using

Planck’s law and the emissivities from AST05 to

scale the measured radiances after correction for

atmospheric effects. The Kinetic (K) temperature data

Table 1 Descriptive statistics and correlation matrix of the land cover categories

Land cover N Minimum

fractions

Maximum

fractions

Mean Median Mode SD

Buildings 11,025 0.00 0.754 0.194 0.190 0.200 0.077

Soil 11,025 0.00 0.801 0.188 0.170 0.130 0.099

Grass 11,025 0.00 0.952 0.220 0.210 0.020 0.149

Impervious 11,025 0.00 0.953 0.269 0.250 0.120 0.151

Water 11,025 0.00 0.052 0.002 0.000 0.000 0.003

Trees 11,025 0.00 0.578 0.101 0.090 0.090 0.072

Correlations (N = 11,025)

Buildings Soil Grass Impervious Water Trees

Buildings 1

Soil -.014 1

Grass -.317** -.456** 1

Impervious .110** .183** -.795** 1

Water -.079** -.093** .136** -.134** 1

Trees -.268** -.546** .719** -.597** .129** 1

** Correlation is significant at the 0.01 level
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(i.e., ASTER08) in Hierarchical Data Format was used

to convert temperatures into Celsius: C = (ASTER_

08*0.1)*(-273.15). The five thermal infrared chan-

nels of the ASTER instrument enable direct surface

emissivity measurements, and hence, provide accurate

temperature representation (JPL 2001). The absolute

accuracy of ASTER08 ranges from 1 to 4 K and

relative accuracy is 0.3 K (JPL 2001).

Image integration and regression analysis

To compare the land cover with the surface temper-

ature, we registered both to a Universal Transverse

Mercator (UTM) projection with WGS 84. In each

39 9 39 window (2.4 m 9 39 = 93.6 m), we

calculated the fraction of each land cover, which

represents the land cover fraction per ASTER pixel

(90 m resolution). We also applied a mean local

window (3 9 3) to the ASTER temperature data to

minimize errors that might occur due to registration

errors between the Quickbird and ASTER images.

We conducted thirty-two independent univariate

regression models on n = 11,025 observations (the

total number of ASTER pixels in our study area) to

quantify the relationship between surface temperature

(dependent variable) and land cover fraction (inde-

pendent variable). We compared four dependent

variables (daytime winter, nighttime winter, daytime

summer and nighttime summer) against the fraction of

each land cover class (buildings, grass, unmanaged

Table 2 Descriptive statistics of surface temperatures (�C)

Date N Time Minimum (�C) Maximum (�C) Mean (�C) Median Mode SD

2-February-2007 11,025 Daytime 17.85 39.85 29.70 29.96 30.07 2.12

6-July-2005 11,025 Daytime 38.85 67.85 55.83 56.41 56.96 3.42

5-March-2007 11,025 Nighttime 1.15 15.85 10.44 10.41 9.96 2.02

22-August-2005 11,025 Nighttime 19.85 44.85 31.56 31.41 30.74 2.20

Fig. 5 Regression analysis between grass fractions and surface

temperatures. a Grass fractions versus nighttime temperature

(�C) (5 March 2007); b Grass fractions versus nighttime

temperature (�C) (22 August 2005); c Grass fractions versus

daytime temperature (�C) (27 February 2007); d Grass fractions

versus daytime temperature (�C) (6 July 2005)
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soil, impervious, trees and water). We also explored

the combined effects of the detailed land cover classes

by developing multiple regression models. We used all

of the selected classes as independent parameters.

Results and discussions

Table 1 shows that the water category has the lowest

maximum (0.052) and lowest mean (0.002) since most

water bodies in the study area are swimming pools and

their area coverage is small in comparison to other

land cover categories. The tree category is the second

lowest coverage in the area with the mean value of

0.101. The highest mean is given by the impervious

class (0.269) as it is the most widely covered category.

However, mean values of most land cover classes are

not greatly different from each other except for the

water category. It should also be noted that most

categories are negatively correlated (Table 1).

Grass and impervious have the highest deviations

from their mean values (0.149 and 0.151), are

negatively correlated, and have the highest correlation

(-0.795). Other strongly correlated classes include

grass versus trees (0.719), impervious versus trees

(-0.597), soil versus trees (-0.547) and grass versus

soil (-0.456). Buildings are inversely correlated with

grass (-0.318) and trees (-0.269). The summer day

and night images yielded mean temperatures of 55.83

and 31.56 �C, respectively whereas the winter day and

night images showed greatly lower mean temperatures

of 29.70 and 10.44 �C, respectively (Table 2). How-

ever, standard deviation (SD) values of the surface

temperatures are not significantly different among the

different dates.

Figure 5a shows that grass fractions do not have a

strong impact on nighttime surface temperatures

during the winter. However, there was a strong

negative linear relation between grass fractions and

nighttime temperature in the summer (Fig. 5b). We

Fig. 6 Regression analysis between grass fractions (x axis) and

surface temperatures (y axis). a Grass fractions (0–0.4) versus

daytime temperature (�C) (27 February 2007); b Grass fractions

(0.4–1) versus daytime temperature (�C) (27 February 2007);

c Grass fractions (0–0.4) versus daytime temperature (�C)

(6 July 2005); d Grass fractions (0.4–1) versus daytime

temperature (�C) (6 July 2005)
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observed that grassy surfaces effectively lower night-

time temperatures as temperature increases in the

summer. However, there are non-linear relationships

between grass fractions and daytime surface temper-

atures both in winter and summer. It can be observed

from Fig. 5c, d that regression slopes are gentle for

grass percent ranging from about 0 to 40 % and get

significantly steeper with increasing grass fraction

values above 40 %.

To observe this trend more effectively we split

grass surface percent into two groups (0–40 % and

40–100 %) and observed their relationships with

surface temperatures. The relationships are presented

in Fig. 6a–d. Figure 6a indicates that there was a small

relationship with a gentle regression slope between

grass fractions and daytime surface temperatures in

the winter. There is a similar relationship in the

summer. This shows that grass surface lower than

40 % are not effective in lowering daytime tempera-

tures both in the winter and summer. In contrast, grass

surfaces higher than 40 % have influence on lowering

surface temperatures both in the winter and summer

(Fig. 6b, d).

We discovered that there is no relationship between

trees and nighttime surface temperatures during winter

(Fig. 7a). However, trees are negatively correlated

with winter daytime temperatures (Fig. 7c). The same

negative correlation is observed for both daytime and

nighttime temperatures during summer (Fig. 7b, d). It

is important to note that the regression slopes are

steeper for tree fractions than grass fractions. This

implies that trees can lower surface temperatures more

effectively than grassy areas in desert urban environ-

ments. The relationships between trees and tempera-

tures as we observed in the study were based on very

low tree cover percent mostly ranging between 0 and

30 % whereas there are many areas or pixels contain-

ing grass fractions higher than 40 % (e.g., grass

fractions in golf courses). The regression models

suggest that 20 % increase in tree area coverage in a

neighborhood can cool nighttime surface temperatures

by -0.02 to -2.71 �C and daytime surface temper-

atures by -2.38 to -5.74 �C in winter and summer

respectively. However, grass is not as effective as tress

and can cool only about half the surface temperatures

that trees can lower.

Fig. 7 Regression analysis between tree fractions (x axis) and

surface temperatures (y axis). a Tree fractions versus nighttime

temperature (�C) (5 March 2007); b Tree fractions versus

nighttime temperature (�C) (22 August 2005); c Tree fractions

versus daytime temperature (�C) (27 February 2007); d Tree

fractions versus daytime temperature (�C) (6 July 2005)
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There is no relationship between water fractions

and nighttime temperatures that are statistically sig-

nificant regardless of the season (Fig. 8a, b). The

relationships with daytime temperatures were very

low at 0.01 significance level (Fig. 8c, d) since most

water was swimming pools. Hereafter, water may be

referred to as swimming pools. There may not be any

swimming pool or their fraction values could be close

to zero at 90 9 90 m spatial resolution in some cases.

Therefore, we conclude that swimming pools do not

have any considerable impact on nighttime tempera-

tures nor do they effectively lower thermal energy

during the day in a desert environment. This finding is

different from what was reported in Guhathakurta and

Gober (2010).

Contrary to a common perception as well, buildings

are negatively correlated to nighttime surface temper-

atures during winter (Fig. 9a). Moreover, there is no

relation between nighttime surface temperatures in the

summer and building fractions (Fig. 9b). We discov-

ered that buildings lower the nighttime temperature in

the winter and do not have any impact on the nighttime

temperature in the summer. It was also found that the

relations between building fractions and daytime

temperatures were low, and the slopes of regression

lines were small (Fig. 9c, d). This implies that building

fractions do not have a significant impact on daytime

temperatures in both winter and summer.

From Fig. 9a–d, we observe that buildings function

as environmentally friendly materials to lower surface

temperatures at night and have a minimal impact on

urban warming. This finding contradicts the way we

traditionally have been thinking. The phenomenon

may be due to a number of factors. First, most rooftops

and building walls in our study area are composed of

bright materials leading to high reflectance and lower

heat retention. Artificial cooling or indoor cooling

facility in buildings especially in a desert environment

may also play a factor in influencing the urban

temperature. Furthermore, buildings create surface

roughness that may interact with surrounding materi-

als such as trees and grass. Finally, buildings provide

Fig. 8 Regression analysis between water fractions (x axis) and

surface temperatures (y axis). a Water fractions versus nighttime

temperature (�C) (5 March 2007); b Water fractions versus

nighttime temperature (�C) (22 August 2005); c Water fractions

versus daytime temperature (�C) (27 February 2007); d Water

fractions versus daytime temperature (�C) (6 July 2005)
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shade almost the entire day except around noon

thereby providing a cooling effect and acting somewhat

like vegetation. Since we observed a pattern that

shows two different correlation trends between build-

ings and surface temperatures in Fig. 10b–d (i.e., 32

�C for Fig. 10b, 30 �C for Fig. 10c, and 55 �C for

Fig. 10d), we decided to examine which subtypes of

the buildings fall into the two groups, and explore their

contributions to surface temperature. To achieve this,

we digitized residential and commercial land use types

to split residential and commercial buildings. Many

UHI studies showed the relation between impervious

surfaces or paved areas mostly as fractions at sub-pixel

level. Since buildings, swimming pools and other

impervious surface (e.g., roads, parking lots, drive-

ways, sidewalks) are man-made and do not allow

water to infiltrate to the soil, they are categorized

together as impervious. It is not possible to examine

how different man-made features influence urban

surface temperatures when dealing with fractions of

impervious as a whole (Myint et al. 2010). Therefore

we not only explored buildings, swimming pools and

other impervious separately but also examined differ-

ent types of buildings independently.

From Fig. 10a–d and Table 3 it can be observed

that one of the most significant correlations for urban

land use types is the nighttime summer commercial

area of roofs. There is a cooling of commercial areas

8 �C by increasing commercial buildings from a low

percent of 10 % upwards of 60 %. Specifically, com-

mercial roofs have negative relationships with surface

temperatures at 0.01 level implying that they lower

surface temperatures especially when dealing with

summer nighttime temperatures (statistically signifi-

cant r of -0.312, -0.165, -0.402, and -0.201). Since

most commercial roofs in the study area have light-

colored reflective roofs and building fraction is inversely

correlated to impervious surface areas (r = -0.270)

(Table 4), which more readily store heat for release at

night, the radiating roof level areas would be cooling

Fig. 9 Regression analysis between building fractions (x axis)

and surface temperatures (y axis). a Building fractions versus

nighttime temperature (�C) (5 March 2007); b Building

fractions versus nighttime temperature (�C) (22 August 2005);

c Building fractions versus daytime temperature (�C) (27

February 2007); d Building fractions versus daytime tempera-

ture (�C) (6 July 2005)

970 Landscape Ecol (2013) 28:959–978

123



Fig. 10 Regression analysis between commercial building

fractions (x axis) and surface temperatures (y axis). a Commer-

cial building fractions versus nighttime temperature (�C)

(5 March 2007); b Commercial building fractions versus

nighttime temperature (�C) (22 August 2005); c Commercial

building fractions versus daytime temperature (�C) (27 February

2007); d Commercial building fractions versus daytime

temperature (�C) (6 July 2005)

Table 3 Correlation matrix of buildings (i.e., commercial, residential) and surface temperatures

(N = 5,071) Correlations

Commercial 5 March 2007

(ntemp)

6 July 2005

(dtemp)

22 August 2005

(ntemp)

27 February 2007

(dtemp)

Commercial 1

5 March 2007 (ntemp) -.312** 1

6 July 2005 (dtemp) -.165** .089** 1

22 August 2005 (ntemp) -.402** .523** .421** 1

27 February 2007 (dtemp) -.201** .053** .714** .244** 1

(N = 55,954) Residential 5 March

2007

(ntemp)

6 July

2005

(dtemp)

22 August

2005

(ntemp)

27 February

2007

(dtemp)

Residential 1

5 March 2007 (ntemp) -.020 1

6 July 2005 (dtemp) .517** -.069** 1

22 August 2005 (ntemp) .214** .196** .637** 1

27 February 2007 (dtemp) .415** -.214** .856** .493** 1

** Correlation is significant at the 0.01 level
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more effectively than the canyons between buildings

composed mostly of parking areas and impervious

surfaces. The cooling of some commercial areas

increases with the percent (from a low of 10 % to

upwards of 70 %) of commercial buildings in the area.

Thus, higher building fractions with high albedo roofs

within the commercial areas lead to cooler overall

surface temperatures compared to lower commercial

building fraction areas with more asphalt and other dark,

impervious surfaces. There also appears to be a slightly

low negative correlation between more commercial

building fraction and surface temperatures during the

daytime in summer. Within commercial areas the largest

factor may be that more impervious surfaces lead to less

vegetation (trees r = -0.460; grass r = -0.650)

(Table 4). More commercial buildings also create less

impervious surface fractions. So a low-density, low-

vegetation commercial area would be hotter due to heat

absorption of impervious surfaces; whereas, a higher

Table 4 Correlation matrix of buildings (i.e., commercial,

residential) and other selected land cover categories

Correlations (5,071)

Commercial Impervious Trees Grass

Commercial 1

Impervious -.270** 1

Trees -.035* -.460** 1

Grass -.082** -.650** .737** 1

Correlations (5,954)

Residential Impervious Trees Grass

Residential 1

Impervious .182** 1

Trees -.294** -.467** 1

Grass -.297** -.708** .571** 1

* Correlation is significant at the 0.05 level

** Correlation is significant at the 0.01 level

Fig. 11 Regression analysis between residential building

fractions (x axis) and surface temperatures (y axis). a Residential

building fractions versus nighttime temperature (�C) (5 March

2007); b Residential building fractions versus nighttime

temperature (�C) (22 August 2005); c Residential building

fractions versus daytime temperature (�C) (27 February 2007);

d Residential building fractions versus daytime temperature

(�C) (6 July 2005)
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building fraction reduces the impervious effect and

therefore the need for vegetation.

Unlike the findings for commercial buildings,

residential buildings showed positive relationships

with surface temperatures (Fig. 11b–d; Table 3)

except nighttime temperatures in the summer. The

highest coefficient of determination is summer day-

time residential situations of more houses creating

more roof area at the expense of available trees and

grass which would act to cool. This is evidenced by an

inverse correlation of residential building fraction and

tree and grass fraction (r of -0.294 and -0.297 for

trees and grass, respectively in Table 4). Furthermore,

residential houses are typically one- or two-story

buildings, thus they do not provide a significant cooling

effect for nearby areas and other houses. As we

observed a weak inverse relationship between resi-

dential buildings and winter nighttime temperatures

(Fig. 11a; Table 3), we can conclude that residential

buildings have no impact on or ineffectively lower

surface temperatures in winter.

In contrast to the above anthropogenic features,

impervious surfaces (e.g., roads, parking lots, drive-

ways, sidewalks) augment nighttime surface temper-

atures significantly, regardless of whether they are

observed in winter or summer (Fig. 12a–d). Fractions

of impervious surface have a non-linear relation and

strong impact on daytime surface temperatures as

well. In general, coefficients of determination (R2)

values of all observations for these surfaces were

significantly higher than buildings. It can be observed

from Fig. 12c, d that fractions of impervious surfaces

ranging from 0 to about 0.4 can increase daytime

temperatures at increasingly high rates. The rate of

change of temperatures decreases as fractions increase

after about 0.4. This is because almost all impervious

surfaces (roads and parking lots) in the City of Phoenix

are made of asphalt (dark surface).

There have also been several studies that demon-

strated a linear relationship between impervious

surfaces as a whole (commercial buildings, residential

buildings, swimming pools, and other impervious

Fig. 12 Regression analysis between impervious fractions

(x axis) and surface temperatures (y axis). a Impervious

fractions versus nighttime temperature (�C) (5 March 2007);

b Impervious fractions versus nighttime temperature (�C) (22

August 2005); c Impervious fractions versus daytime temper-

ature (�C) (27 February 2007); d Impervious fractions versus

daytime temperature (�C) (6 July 2005)
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surfaces together) and surface temperatures. It was

observed that these relationships were not significant

and the scatter plot did not show a clear pattern since

each point (each pixel) under investigation was

considered (Zhang et al. 2009; Myint et al. 2010; Li

et al. 2011). The use of medium resolution data

without the identification of different types of imper-

vious surfaces could have led to this ambiguous

pattern.

Following the preceding analyses and findings, it is

appropriate to report that other impervious surfaces

accelerate energy fluxes significantly whereas build-

ings serve as environmentally friendly materials to the

UHI effect. This is probably due to the fact that most

other impervious surfaces are made of dark surfaces,

which is not the case for building rooftops and

building materials in our study area. It should be

noted that approximately 90 % of all impervious

surfaces in the United States are made of asphalt (dark

surfaces) (EPA 2010). This is significant for other

urban arid and semi-arid areas, both in the U.S. and

globally.

Contrary to another common perception, unman-

aged soil fractions strongly influence daytime and

nighttime temperatures both in the summer and winter

(Fig. 13a–d). Their relationships are statistically sig-

nificant at 0.01. We observed that the relationships are

non-linear. It was also observed that smaller soil

fractions have a bigger impact on urban warming

effect especially when dealing with daytime temper-

ature in the summer (Fig. 13d). Unmanaged soil

covers are as physically powerful as impervious

surface areas in augmenting the UHI effect.

As stated earlier, we established multiple regression

models to explore the combined effects of five

independent variables (i.e., buildings, soil, grass,

impervious, trees) together on surface temperatures.

Table 5 indicates the proportion of the variance in the

temperatures accounted for by our set of predictor

variables (building, soil, grass, impervious, water,

trees) for the multiple regression models for all

selected ASTER images-6 July 2005, 22 August

2005, 27 February 2007, and 5 March 2007. The

combined effects of predictor variables have more

Fig. 13 Regression analysis between unmanaged soil fractions

(x axis) and surface temperatures (y axis). a Unmanaged soil

fractions versus nighttime temperature (�C) (5 March 2007);

b Unmanaged soil fractions versus nighttime temperature (�C)

(22 August 2005); c Unmanaged soil fractions versus daytime

temperature (�C) (27 February 2007); d Unmanaged soil

fractions versus daytime temperature (�C) (6 July 2005)

974 Landscape Ecol (2013) 28:959–978

123



impact on surface temperatures in the summer since

the summer day and night observations yield better

overall multiple R2 than the winter observations.

For the winter March night (Table 5), it can be

observed that all parameters strongly influence night-

time surface temperatures in the winter. Grass was

negatively correlated to temperatures and the strongest

variable among all. Other equally strong parameters

that influence surface temperatures include impervi-

ous surface, trees and buildings. It should be noted that

impervious surface elevated surface temperatures

whereas buildings effectively lowered them during

the winter night.

For the summer August night (Table 5), impervious

surface, grass and unmanaged soil rank the highest

among all independent variables with impervious

surfaces, unmanaged soil and trees elevating surface

temperatures and grass lowering them. For the other

variables, buildings were found to lower nighttime

surface temperatures in the summer whereas impervi-

ous surface strongly elevates nighttime temperatures.

Please note that trees were positively correlated with

nighttime temperatures in both winter and summer.

This is slightly different from what we observed in the

univariate models especially when dealing with sum-

mer night temperatures since the univariate model for

winter night temperatures was not statistically signif-

icant. However, this finding is consistent with what

was reported in Myint et al. (2010). Under and near

tree canopies at night especially in the winter heat is

retained more than open areas due to decreased sky

view factors. On the other hand, solar radiation that

can penetrate low crown closure during the day heats

other man-made features that may not be able to

radiate effectively and efficiently (Heisler et al. 1995).

For the winter February daytime temperatures

(Table 5), most predictor variables do not have strong

impacts on the dependent variable except the tree

category. The regression results for the winter suggest

that trees can effectively lower daytime temperatures

whereas the grass category was not effective in

decreasing temperatures. Buildings have the lowest

or almost no impact on daytime temperatures in the

winter. Unmanaged soil category was the second

strongest variable significantly increasing daytime

temperatures in the winter.

For the summer July day (Table 5), although all

factors significantly relate to temperatures, the ranking

of importance of those factors shows that the grass

category had the greatest effect followed by unman-

aged soil and trees. It was found that both grass and

trees can lower temperatures effectively in summer

days. Impervious surfaces had the least impact on

summer day temperatures. In contrast, unmanaged soil

drastically increases surface temperatures in the

summer.

Conclusions

We conclude that the built environment as a whole

does not explain the UHI effect in desert cities but that

individual land covers contribute differently. This

conclusion validates our assertion that generalized

Table 5 Multiple regression statistics

Coef SE Beta t p

5-March-07 (Nighttime), R2 = 0.147, f = 379.9

(Constant) 10.728 .150 71.690 0.000

Buildings -3.536 .219 -.166 -16.167 0.000

Soil -.287 .203 -.017 -1.412 0.158

Grass -3.655 .216 -.329 -16.936 0.000

Impervious 2.282 .184 .209 12.396 0.000

Trees 6.367 .325 .277 19.610 0.000

22-August-05 (Nighttime), R2 = 0.681, f = 4,695.3

(Constant) 30.150 .097 310.127 0.000

Buildings -2.321 .142 -.103 -16.338 0.000

Soil 3.356 .132 .190 25.421 0.000

Grass -3.311 .140 -.281 -23.613 0.000

Impervious 6.625 .120 .572 55.388 0.000

Trees 1.777 .211 .073 8.422 0.000

27-February-07 (Daytime), R2 = 0.365, f = 1,266.4

(Constant) 29.622 .116 256.185 0.000

Buildings .739 .169 .039 4.373 0.000

Soil 3.148 .157 .211 20.051 0.000

Grass -.601 .167 -.060 -3.606 0.000

Impervious .812 .142 .083 5.710 0.000

Trees -7.292 .251 -.355 -29.063 0.000

6-July-05 (Daytime), R2 = 0.669, f = 4,452.6

(Constant) 55.715 .162 344.716 0.000

Buildings 3.912 .236 .106 16.561 0.000

Soil 7.594 .219 .263 34.603 0.000

Impervious -7.015 .233 -.364 -30.093 0.000

Water 1.562 .199 .083 7.855 0.000

Trees -9.337 .351 -.235 -26.623 0.000
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land use and vegetation indices from low-resolution

remotely sensed data sources limits understanding of

the drivers and consequences of the UHI. Future

studies of the UHI should consider using high-

resolution data sources.

Specifically for Phoenix, we found that buildings

alone do not contribute significantly to UHI and, in

fact, demonstrate solar insulation qualities, unlike

unmanaged soil and impervious surfaces that exhibit

higher heat storage capacities. Asphalt surfaces,

generally located near buildings, is the land cover

class that exacerbates extreme heat. We also found

that a more compact arrangement of commercial

buildings does not result in more heat during the day,

but actually enables more cooling at night due to the

avoidance of heat storing impervious surfaces and

more roof-level emittance of heat. In regards to

residential buildings, we found that greater residential

housing fraction tends to increase daytime surface

temperatures but the impact at night is not significant.

Trees tend to lower surface temperature more effec-

tively than grass in these areas therefore lowering the

UHI and potentially energy use in arid desert areas.

Beyond buildings, we found that unmanaged soils

increase daytime temperatures at an increasingly high

rate, and confirmed that dark impervious materials

increase both daytime and nighttime surface temper-

atures significantly. From these results, we can

surmise that reducing dark impervious surfaces and

unmanaged soil areas would contribute to less heat as

well. Finally, water bodies generally are negatively

correlated to surface temperatures. However, our

study showed that small water bodies, such as

household swimming pools, do not effectively lower

daytime surface temperatures and have no significant

impact on nighttime temperatures due to their area

coverage in comparison to surrounding urban envi-

ronment. This indicates that these water bodies are not

an efficient means of reducing UHI in desert cities.

Finally, it is important to understand the relation

between dark and bright materials in relation to

surface temperatures in desert cities. Darker roofs

and buildings absorb and retain heat longer than white

or bright-colored roofs and buildings. Furthermore,

materials such as metals and smooth surfaces absorb

more heat when they are dark colored versus light

colored and rough.

We conclude that desert city landscapes should be

‘‘built’’ using buildings, trees, shrubs, and bright

materials to reduce temperatures. This conclusion can

be drawn if our focus is solely to mitigate urban

warming without considering the tradeoffs relative to

other environmental factors, such as precipitation and

bio-diversity (Georgescu et al. 2012; Buyantuyev and

Wu 2012), socio-economic values (Jenerette et al.

2007; Buyantuyev and Wu 2010), ecosystem services

(Jenerette et al. 2011) and unintended consequences,

such as increased water use (Gober et al. 2010).
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