265 research outputs found

    Response of the Eastern Mediterranean Microbial Ecosystem to Dust and Dust Affected by Acid Processing in the Atmosphere

    Get PDF
    Acid processes in the atmosphere, particularly those caused by anthropogenic acid gases, increase the amount of bioavailable P in dust and hence are predicted to increase microbial biomass and primary productivity when supplied to oceanic surface waters. This is likely to be particularly important in the Eastern Mediterranean Sea (EMS), which is P limited during the winter bloom and N&P co-limited for phytoplankton in summer. However, it is not clear how the acid processes acting on Saharan dust will affect the microbial biomass and primary productivity in the EMS. Here, we carried out bioassay manipulations on EMS surface water on which Saharan dust was added as dust (Z), acid treated dust (ZA), dust plus excess N (ZN), and acid treated dust with excess N (ZNA) during springtime (May 2012) and measured bacterioplankton biomass, metabolic, and other relevant chemical and biological parameters. We show that acid treatment of Saharan dust increased the amount of bioavailable P supplied by a factor of ~40 compared to non-acidified dust (18.4 vs. 0.45 nmoles P mg−1 dust, respectively). The increase in chlorophyll, primary, and bacterial productivity for treatments Z and ZA were controlled by the amount of N added with the dust while those for treatments ZN and ZNA (in which excessive N was added) were controlled by the amount of P added. These results confirm that the surface waters were N&P co-limited for phytoplankton during springtime. However, total chlorophyll and primary productivity in the acid treated dust additions (ZA and ZNA) were less than predicted from that calculated from the amount of the potentially limiting nutrient added. This biological inhibition was interpreted as being due to labile trace metals being added with the acidified dust. A probable cause for this biological inhibition was the addition of dissolved Al, which forms potentially toxic Al nanoparticles when added to seawater. Thus, the effect of anthropogenic acid processes in the atmosphere, while increasing the flux of bioavailable P from dust to the surface ocean, may also add toxic trace metals such as Al, which moderate the fertilizing effect of the added nutrients

    Radiation of Extant Cetaceans Driven by Restructuring of the Oceans

    Get PDF
    The remarkable fossil record of whales and dolphins (Cetacea) has made them an exemplar of macroevolution. Although their overall adaptive transition from terrestrial to fully aquatic organisms is well known, this is not true for the radiation of modern whales. Here, we explore the diversification of extant cetaceans by constructing a robust molecular phylogeny that includes 87 of 89 extant species. The phylogeny and divergence times are derived from nuclear and mitochondrial markers, calibrated with fossils. We find that the toothed whales are monophyletic, suggesting that echolocation evolved only once early in that lineage some 36–34 Ma. The rorqual family (Balaenopteridae) is restored with the exclusion of the gray whale, suggesting that gulp feeding evolved 18–16 Ma. Delphinida, comprising all living dolphins and porpoises other than the Ganges/Indus dolphins, originated about 26 Ma; it contains the taxonomically rich delphinids, which began diversifying less than 11 Ma. We tested 2 hypothesized drivers of the extant cetacean radiation by assessing the tempo of lineage accumulation through time. We find no support for a rapid burst of speciation early in the history of extant whales, contrasting with expectations of an adaptive radiation model. However, we do find support for increased diversification rates during periods of pronounced physical restructuring of the oceans. The results imply that paleogeographic and paleoceanographic changes, such as closure of major seaways, have influenced the dynamics of radiation in extant cetaceans

    Atmospheric Deposition Effects on Plankton Communities in the Eastern Mediterranean: A Mesocosm Experimental Approach

    Get PDF
    The effects of atmospheric deposition on plankton community structure were examined during a mesocosm experiment using water from the Cretan Sea (Eastern Mediterranean), an area with a high frequency of atmospheric aerosol deposition events. The experiment was carried out under spring-summer conditions (May 2012). The main objective was to study the changes induced from a single deposition event, on the autotrophic and heterotrophic surface microbial populations, from viruses to zooplankton. To this end, the effects of Saharan dust addition were compared to the effects of mixed aerosol deposition on the plankton community over 9 days. The effects of the dust addition seemed to propagate throughout the food-web, with changes observed in nearly all of the measured parameters up to copepods. The dust input stimulated increased productivity, both bacterial and primary. Picoplankton, both autotrophic and heterotrophic capitalized on the changes in nutrient availability and microzooplankton abundance also increased due to increased availability of prey. Five days after the simulated deposition, copepods also responded, with an increase in egg production. The results suggest that nutrients were transported up the food web through autotrophs, which were favored by the Nitrogen supplied through both treatments. Although, the effects of individual events are generally short lived, increased deposition frequency and magnitude of events is expected in the area, due to predicted reduction in rainfall and increase in temperature, which can lead to more persistent changes in plankton community structure. Here we demonstrate how a single dust deposition event leads to enhancement of phytoplankton and microzooplankton and can eventually, through copepods, transport more nutrients up the food web in the Eastern Mediterranean SeaVersión del edito

    Nucleic Acid Content in Crustacean Zooplankton: Bridging Metabolic and Stoichiometric Predictions

    Get PDF
    Metabolic and stoichiometric theories of ecology have provided broad complementary principles to understand ecosystem processes across different levels of biological organization. We tested several of their cornerstone hypotheses by measuring the nucleic acid (NA) and phosphorus (P) content of crustacean zooplankton species in 22 high mountain lakes (Sierra Nevada and the Pyrenees mountains, Spain). The P-allocation hypothesis (PAH) proposes that the genome size is smaller in cladocerans than in copepods as a result of selection for fast growth towards P-allocation from DNA to RNA under P limitation. Consistent with the PAH, the RNA:DNA ratio was >8-fold higher in cladocerans than in copepods, although ‘fast-growth’ cladocerans did not always exhibit higher RNA and lower DNA contents in comparison to ‘slow-growth’ copepods. We also showed strong associations among growth rate, RNA, and total P content supporting the growth rate hypothesis, which predicts that fast-growing organisms have high P content because of the preferential allocation to P-rich ribosomal RNA. In addition, we found that ontogenetic variability in NA content of the copepod Mixodiaptomus laciniatus (intra- and interstage variability) was comparable to the interspecific variability across other zooplankton species. Further, according to the metabolic theory of ecology, temperature should enhance growth rate and hence RNA demands. RNA content in zooplankton was correlated with temperature, but the relationships were nutrient-dependent, with a positive correlation in nutrient-rich ecosystems and a negative one in those with scarce nutrients. Overall our results illustrate the mechanistic connections among organismal NA content, growth rate, nutrients and temperature, contributing to the conceptual unification of metabolic and stoichiometric theories.This research was supported by the Spanish Ministries of Science and Innovation (CGL2011-23681/BOS), and Environment, Rural and Marine Affairs (OAPN2009/067); ‘Consejería de Innovación, Ciencia y Empresa – Junta de Andalucía’ (Excelencia CVI-02598; P09-RNM-5376); The Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning (FORMAS) and Stockholm University’s strategic marine environmental research program ‘Baltic Ecosystem Adaptive Management’, and a Spanish government ‘Formación de Profesorado Universitario’ fellowship to F.J. Bullejos

    Interactive Effect of UVR and Phosphorus on the Coastal Phytoplankton Community of the Western Mediterranean Sea: Unravelling Eco- Physiological Mechanisms

    Get PDF
    Versión del editor4,411

    A morphometric analysis of algal response to low dose, short-term heavy metal exposure

    Full text link
    Three algae, Melosira granulata, Fragilaria capucina , and Anacystis cyanea , collected as part of a natural phytoplankton assemblage were found to differ in their cytological responses to low dose short-term exposure to copper and lead. In general, all were more sensitive to copper than to lead. Fragilaria was more sensitive to both metals than the other species examined. Most immediate changes in relative volume categories can be ascribed to changes in vacuole volume that are most likely the result of changes in membrane permeability. There was some degree of accommodation in all three species at 24 hours. These results are discussed in view of the natural environment of the algae, as well as in relationship to previous studies.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/41729/1/709_2005_Article_BF01281533.pd

    Interaction Effects of Light, Temperature and Nutrient Limitations (N, P and Si) on Growth, Stoichiometry and Photosynthetic Parameters of the Cold-Water Diatom Chaetoceros wighamii

    Get PDF
    Light (20-450 mu mol photons m(-2) s(-1)), temperature (3-11 degrees C) and inorganic nutrient composition (nutrient replete and N, P and Si limitation) were manipulated to study their combined influence on growth, stoichiometry (C:N:P:Chl a) and primary production of the cold water diatom Chaetoceros wighamii. During exponential growth, the maximum growth rate (similar to 0.8 d(-1)) was observed at high temperture and light; at 3 degrees C the growth rate was similar to 30% lower under similar light conditions. The interaction effect of light and temperature were clearly visible from growth and cellular stoichiometry. The average C:N:P molar ratio was 80:13:1 during exponential growth, but the range, due to different light acclimation, was widest at the lowest temperature, reaching very low C:P (similar to 50) and N:P ratios (similar to 8) at low light and temperature. The C:Chl a ratio had also a wider range at the lowest temperature during exponential growth, ranging 16-48 (weight ratio) at 3 degrees C compared with 17-33 at 11 degrees C. During exponential growth, there was no clear trend in the Chl a normalized, initial slope (alpha*) of the photosynthesis-irradiance (PE) curve, but the maximum photosynthetic production (P-m) was highest for cultures acclimated to the highest light and temperature. During the stationary growth phase, the stoichiometric relationship depended on the limiting nutrient, but with generally increasing C:N:P ratio. The average photosynthetic quotient (PQ) during exponential growth was 1.26 but decreased toPeer reviewe
    • …
    corecore