7 research outputs found

    A first-principles study of bilayer 1T'-WTe2/CrI3: A candidate topological spin filter

    Full text link
    The ability to manipulate electronic spin channels in 2D materials is crucial for realizing next-generation spintronics. Spin filters are spintronic components that polarize spins using external electromagnetic fields or intrinsic material properties like magnetism. Recently, topological protection from backscattering has emerged as an enticing feature through which the robustness of 2D spin filters might be enhanced. In this work, we propose and then characterize one of the first 2D topological spin filters: bilayer CrI3/1T'-WTe2. To do so, we use a combination of Density Functional Theory and maximally localized Wannier functions to demonstrate that the bilayer (BL) satisfies the principal criteria for being a topological spin filter; namely that it is gapless, exhibits charge transfer from WTe2 to CrI3 that renders the BL metallic despite the CrI3 retaining its monolayer ferromagnetism, and does not retain the topological character of monolayer 1T'-WTe2. In particular, we observe that the atomic magnetic moments on Cr from DFT are approximately 3.2 mB/Cr in the BL compared to 2.9 mB/Cr with small negative ferromagnetic (FM) moments induced on the W atoms in freestanding monolayer CrI3. Subtracting the charge and spin densities of the constituent monolayers from those of the BL further reveals spin-polarized charge transfer from WTe2 to CrI3. We find that the BL is topologically trivial by showing that its Chern number is zero. Altogether, this evidence indicates that BL 1T'-WTe2/CrI3 is gapless, magnetic, and topologically trivial, meaning that a terraced WTe2/CrI3 BL heterostructure in which only a portion of a WTe2 monolayer is topped with CrI3 is a promising candidate for a 2D topological spin filter. Our results further suggest that 1D chiral edge states may be realized by stacking strongly hybridized FM monolayers, like CrI3, atop 2D nonmagnetic Weyl semimetals like 1T'-WTe2

    Self-consistent convolutional density functional approximations: Application to adsorption at metal surfaces

    Full text link
    The exchange-correlation (XC) functional in density functional theory is used to approximate multi-electron interactions. A plethora of different functionals is available, but nearly all are based on the hierarchy of inputs commonly referred to as "Jacob's ladder." This paper introduces an approach to construct XC functionals with inputs from convolutions of arbitrary kernels with the electron density, providing a route to move beyond Jacob's ladder. We derive the variational derivative of these functionals, showing consistency with the generalized gradient approximation (GGA), and provide equations for variational derivatives based on multipole features from convolutional kernels. A proof-of-concept functional, PBEq, which generalizes the PBEα\alpha framework where α\alpha is a spatially-resolved function of the monopole of the electron density, is presented and implemented. It allows a single functional to use different GGAs at different spatial points in a system, while obeying PBE constraints. Analysis of the results underlines the importance of error cancellation and the XC potential in data-driven functional design. After testing on small molecules, bulk metals, and surface catalysts, the results indicate that this approach is a promising route to simultaneously optimize multiple properties of interest

    The path towards functional nanoparticle-DNA origami composites

    No full text
    corecore