425 research outputs found

    Peculiarities of calculating the cyclic strength of important threaded joints

    Get PDF
    The calculation of the strength of important threaded joints is started by defining the minimum size of the cross-section of bolts (studs). Then the static and cyclic strength is tested. The studs of the demountable joints of nuclear power equipment are calculated in accordance with the norms of the Russian Federation and the ASME Code. The calculation methods coincide in essence, they are based on similar limit states; however, there also some differences exist. The authors investigate and compare both methods in their work. There is a brief analysis of calculation methods in the article. For closer definition of standards and their substantiation the authors used experimental and theoretical investigations performed at Laboratory of Strength Mechanics of Vilnius Gediminas Technical University. In order to develop a uniform cyclic strength and shakedown calculation procedure for critical threaded joints, a completely new calculation of a progressive profile change is recommended to be performed before the calculation of cyclic strength. The results have been used in the development of calculation standards for nuclear power equipment, in designing mineral grinding machines and evaluating their residual resource. First Published Online: 30 Jul 201

    Sensitivity of dynamic behaviour of the FE model: Case study for the ignalina NPP reactor building

    Get PDF
    The 3D thin‐walled finite element model of Ignalina NPP Unit 2 reactor building was developed aimed at the evaluation of the global dynamic behaviour with a focus on the seismic response. The model comprises description of the monolithic structures, while prefabricated frame structures are ignored and replaced by external masses. Sensitivity study of the selected dynamic characteristics of the model with respect to data uncertainties is considered. Uncertainty of the model is considered in terms of masses of removed structures and wall stiffness. Seismic input is represented by the site specific free‐field ground response acceleration spectra. The sensitivity study concerns variations of frequencies and acceleration of in‐structure horizontal response spectra at specified points. Maximal bending moments are also considered. It was obtained that the reactor level is not sensitive to the uncertainties considered, while discernable sensitivity was detected at the top level of the structure. Santrauka Pateikta Ignalinos atominės elektrinės pastato erdvinio baigtinių elementų dinaminio modelio kūrimo koncepcija, išnagrinėtas šio modelio jautrumas keičiamoms masėms ir sienų standumui. Parodyta, kaip šie keičiami dydžiai turi įtaką dažniams, horizontaliems tam tikrų nagrinėjamų taškų atsako spektrams, lenkimo momentų persiskirstymui ir jų didžiui. First Published Online: 14 Oct 2010 Reikšminiai žodžiai: Ignalinos AE, baigtinių elementų modelis, savųjų dažnių ir seisminė analizė, plyno lauko spektras, atsako spektras

    Critical factors of the application of nanotechnology in construction industry by using ANP technique under fuzzy intuitionistic environment

    Get PDF
    Nanotechnology plays a significant role in construction industry. The construction industry has been employed nanomaterials to improve the performance of construction components and the safety of the structure and to reduce the energy consuming and the cost of maintenance. In other words, nanotechnology has a substantial impact on the construc­tion industry. Therefore, it is necessary to identify and evaluate the critical factors of the application of nanotechnology in construction in order to concentrate on the most critical factors. However, several techniques have been developed to prioritize the evaluation criteria. Analytical network process (ANP) technique, a branch of multi criteria decision mak­ing (MCDM) methods, is a powerful tool to rank a limited number of criteria. This technique takes into account both tangible and intangible criteria in the process of formulation of a decision making problem. This method is capable of handling all types of independence and dependence relationships. On the other hand, intuitionistic fuzzy set (IFS) is a well-known technique in considering the inherent uncertainty involved in the process of modelling a decision making problem. In this paper, a new model based on the IFS and ANP technique is proposed to evaluate the critical factors of the application of nanotechnology in the construction industry. The results demonstrate that the proposed model has a high potential for taking into account the uncertainty in the form of a three dimension function, including membership, non-membership, and non-determinacy

    Optimasi Portofolio Resiko Menggunakan Model Markowitz MVO Dikaitkan dengan Keterbatasan Manusia dalam Memprediksi Masa Depan dalam Perspektif Al-Qur`an

    Full text link
    Risk portfolio on modern finance has become increasingly technical, requiring the use of sophisticated mathematical tools in both research and practice. Since companies cannot insure themselves completely against risk, as human incompetence in predicting the future precisely that written in Al-Quran surah Luqman verse 34, they have to manage it to yield an optimal portfolio. The objective here is to minimize the variance among all portfolios, or alternatively, to maximize expected return among all portfolios that has at least a certain expected return. Furthermore, this study focuses on optimizing risk portfolio so called Markowitz MVO (Mean-Variance Optimization). Some theoretical frameworks for analysis are arithmetic mean, geometric mean, variance, covariance, linear programming, and quadratic programming. Moreover, finding a minimum variance portfolio produces a convex quadratic programming, that is minimizing the objective function ðð¥with constraintsð ð 𥠥 ðandð´ð¥ = ð. The outcome of this research is the solution of optimal risk portofolio in some investments that could be finished smoothly using MATLAB R2007b software together with its graphic analysis

    Search for heavy resonances decaying to two Higgs bosons in final states containing four b quarks

    Get PDF
    A search is presented for narrow heavy resonances X decaying into pairs of Higgs bosons (H) in proton-proton collisions collected by the CMS experiment at the LHC at root s = 8 TeV. The data correspond to an integrated luminosity of 19.7 fb(-1). The search considers HH resonances with masses between 1 and 3 TeV, having final states of two b quark pairs. Each Higgs boson is produced with large momentum, and the hadronization products of the pair of b quarks can usually be reconstructed as single large jets. The background from multijet and t (t) over bar events is significantly reduced by applying requirements related to the flavor of the jet, its mass, and its substructure. The signal would be identified as a peak on top of the dijet invariant mass spectrum of the remaining background events. No evidence is observed for such a signal. Upper limits obtained at 95 confidence level for the product of the production cross section and branching fraction sigma(gg -> X) B(X -> HH -> b (b) over barb (b) over bar) range from 10 to 1.5 fb for the mass of X from 1.15 to 2.0 TeV, significantly extending previous searches. For a warped extra dimension theory with amass scale Lambda(R) = 1 TeV, the data exclude radion scalar masses between 1.15 and 1.55 TeV

    Measurement of the top quark mass using charged particles in pp collisions at root s=8 TeV

    Get PDF
    Peer reviewe

    Search for supersymmetry in events with one lepton and multiple jets in proton-proton collisions at root s=13 TeV

    Get PDF
    Peer reviewe

    Measurement of the Splitting Function in &ITpp &ITand Pb-Pb Collisions at root&ITsNN&IT=5.02 TeV

    Get PDF
    Data from heavy ion collisions suggest that the evolution of a parton shower is modified by interactions with the color charges in the dense partonic medium created in these collisions, but it is not known where in the shower evolution the modifications occur. The momentum ratio of the two leading partons, resolved as subjets, provides information about the parton shower evolution. This substructure observable, known as the splitting function, reflects the process of a parton splitting into two other partons and has been measured for jets with transverse momentum between 140 and 500 GeV, in pp and PbPb collisions at a center-of-mass energy of 5.02 TeV per nucleon pair. In central PbPb collisions, the splitting function indicates a more unbalanced momentum ratio, compared to peripheral PbPb and pp collisions.. The measurements are compared to various predictions from event generators and analytical calculations.Peer reviewe

    Search for anomalous couplings in boosted WW/WZ -> l nu q(q)over-bar production in proton-proton collisions at root s=8TeV

    Get PDF
    Peer reviewe

    Inclusive search for supersymmetry using razor variables in pp collisions at root s=13 TeV

    Get PDF
    Peer reviewe
    corecore