19 research outputs found

    Anti-HBV treatment induces novel reverse transcriptase mutations with reflective effect on HBV S antigen

    Get PDF
    The identification of novel reverse-transcriptase (RT) drug-resistance mutations is critical in predicting the probability of success to anti-HBV treatment. Furthermore, due to HBV-RT/HBsAg gene-overlap, they can have an impact on HBsAg-detection and quantification

    Measurement of the dependence of transverse energy production at large pseudorapidity on the hard-scattering kinematics of proton-proton collisions at √s=2.76 TeV with ATLAS

    Get PDF
    The relationship between jet production in the central region and the underlying-event activity in a pseudorapidity-separated region is studied in 4.0 pb-1 of s=2.76 TeV pp collision data recorded with the ATLAS detector at the LHC. The underlying event is characterised through measurements of the average value of the sum of the transverse energy at large pseudorapidity downstream of one of the protons, which are reported here as a function of hard-scattering kinematic variables. The hard scattering is characterised by the average transverse momentum and pseudorapidity of the two highest transverse momentum jets in the event. The dijet kinematics are used to estimate, on an event-by-event basis, the scaled longitudinal momenta of the hard-scattered partons in the target and projectile beam-protons moving toward and away from the region measuring transverse energy, respectively. Transverse energy production at large pseudorapidity is observed to decrease with a linear dependence on the longitudinal momentum fraction in the target proton and to depend only weakly on that in the projectile proton. The results are compared to the predictions of various Monte Carlo event generators, which qualitatively reproduce the trends observed in data but generally underpredict the overall level of transverse energy at forward pseudorapidity

    Measurement of W boson angular distributions in events with high transverse momentum jets at s√= 8 TeV using the ATLAS detector

    Get PDF
    The W boson angular distribution in events with high transverse momentum jets is measured using data collected by the ATLAS experiment from proton–proton collisions at a centre-of-mass energy at the Large Hadron Collider, corresponding to an integrated luminosity of . The focus is on the contributions to processes from real W emission, which is achieved by studying events where a muon is observed close to a high transverse momentum jet. At small angular separations, these contributions are expected to be large. Various theoretical models of this process are compared to the data in terms of the absolute cross-section and the angular distributions of the muon from the leptonic W decay.Fil: Aaboud, M.. Université Mohamed Premier and LPTPM; MarruecosFil: Aad, G.. Aix-Marseille Université ; FranciaFil: Abbott, B.. Oklahoma State University; Estados UnidosFil: Abdallah, J.. Academia Sinica; ChinaFil: Abdinov, O.. Azerbaijan Academy of Sciences; AzerbaiyánFil: Alconada Verzini, María Josefina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaFil: Alonso, Francisco. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaFil: Arduh, Francisco Anuar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaFil: Dova, Maria Teresa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaFil: Hoya, Joaquín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaFil: Monticelli, Fernando Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaFil: Wahlberg, Hernan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaFil: Bossio Sola, Jonathan David. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Marceca, Gino. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Otero y Garzon, Gustavo Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Piegaia, Ricardo Nestor. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Sacerdoti, Sabrina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Zibell. A.. Julius-Maximilians-Universität ; AlemaniaFil: Zieminska, D.. Indiana University; Estados UnidosFil: Zimine, N. I.. Joint Institute for Nuclear Research; RusiaFil: Zimmermann, C.. Universität Mainz ; AlemaniaFil: Zimmermann, S.. Albert-Ludwigs-Universität ; AlemaniaFil: Zinonos, Z.. Georg-August-Universität ; AlemaniaFil: Zinser, M.. Universität Mainz ; AlemaniaFil: Ziolkowski, M.. Universität Siegen ; AlemaniaFil: Živković, L.. University of Belgrade ; SerbiaFil: Zobernig, G.. University of Wisconsin; Estados UnidosFil: Zoccoli, A.. Università di Bologna ; ItaliaFil: Nedden, M. zur. Humboldt University; AlemaniaFil: Zurzolo, G.. Università di Napoli; ItaliaFil: Zwalinski, L.. Cern - European Organization For Nuclear Research; SuizaFil: The ATLAS Collaboration. No especifica

    Erratum: Search for Resonant and Nonresonant Higgs Boson Pair Production in the bb[over ¯]τ^{+}τ^{-} Decay Channel in pp Collisions at sqrt[s]=13  TeV with the ATLAS Detector [Phys. Rev. Lett. 121, 191801 (2018)]

    Get PDF

    Operation and performance of the ATLAS Tile Calorimeter in Run 1

    Get PDF
    The Tile Calorimeter is the hadron calorimeter covering the central region of the ATLAS experiment at the Large Hadron Collider. Approximately 10,000 photomultipliers collect light from scintillating tiles acting as the active material sandwiched between slabs of steel absorber. This paper gives an overview of the calorimeter’s performance during the years 2008–2012 using cosmic-ray muon events and proton–proton collision data at centre-of-mass energies of 7 and 8TeV with a total integrated luminosity of nearly 30 fb−1. The signal reconstruction methods, calibration systems as well as the detector operation status are presented. The energy and time calibration methods performed excellently, resulting in good stability of the calorimeter response under varying conditions during the LHC Run 1. Finally, the Tile Calorimeter response to isolated muons and hadrons as well as to jets from proton–proton collisions is presented. The results demonstrate excellent performance in accord with specifications mentioned in the Technical Design Report

    Corrigendum to "Search for flavour-changing neutral-current couplings between the top quark and the photon with the ATLAS detector at √s=13 TeV" (Physics Letters B, 842 (2023), 137379)

    Get PDF

    A detailed map of Higgs boson interactions by the ATLAS experiment ten years after the discovery

    Get PDF
    The standard model of particle physics1,2,3,4 describes the known fundamental particles and forces that make up our Universe, with the exception of gravity. One of the central features of the standard model is a field that permeates all of space and interacts with fundamental particles5,6,7,8,9. The quantum excitation of this field, known as the Higgs field, manifests itself as the Higgs boson, the only fundamental particle with no spin. In 2012, a particle with properties consistent with the Higgs boson of the standard model was observed by the ATLAS and CMS experiments at the Large Hadron Collider at CERN10,11. Since then, more than 30 times as many Higgs bosons have been recorded by the ATLAS experiment, enabling much more precise measurements and new tests of the theory. Here, on the basis of this larger dataset, we combine an unprecedented number of production and decay processes of the Higgs boson to scrutinize its interactions with elementary particles. Interactions with gluons, photons, and W and Z bosons—the carriers of the strong, electromagnetic and weak forces—are studied in detail. Interactions with three third-generation matter particles (bottom (b) and top (t) quarks, and tau leptons (τ)) are well measured and indications of interactions with a second-generation particle (muons, μ) are emerging. These tests reveal that the Higgs boson discovered ten years ago is remarkably consistent with the predictions of the theory and provide stringent constraints on many models of new phenomena beyond the standard model
    corecore