21 research outputs found

    Search for scalar diphoton resonances in the mass range 65-600 GeV with the ATLAS detector in pp collision data at √s = 8  TeV

    Get PDF
    A search for scalar particles decaying via narrow resonances into two photons in the mass range 65–600 GeV is performed using 20.3  fb−¹ of √s=8  TeV pp collision data collected with the ATLAS detector at the Large Hadron Collider. The recently discovered Higgs boson is treated as a background. No significant evidence for an additional signal is observed. The results are presented as limits at the 95% confidence level on the production cross section of a scalar boson times branching ratio into two photons, in a fiducial volume where the reconstruction efficiency is approximately independent of the event topology. The upper limits set extend over a considerably wider mass range than previous searches

    Measurement of the top-quark mass in the fully hadronic decay channel from ATLAS data at s=7\sqrt{s}=7 TeV

    Get PDF
    The mass of the top quark is measured in a data set corresponding to 4.6 fb1^{−1} of proton--proton collisions with centre-of-mass energy s=7\sqrt{s}=7 TeV collected by the ATLAS detector at the LHC. Events consistent with hadronic decays of top--antitop quark pairs with at least six jets in the final state are selected. The substantial background from multijet production is modelled with data-driven methods that utilise the number of identified bb-quark jets and the transverse momentum of the sixth leading jet, which have minimal correlation. The top-quark mass is obtained from template fits to the ratio of three-jet to dijet mass. The three-jet mass is calculated from the three jets of a top-quark decay. Using these three jets the dijet mass is obtained from the two jets of the WW boson decay. The top-quark mass obtained from this fit is thus less sensitive to the uncertainty in the energy measurement of the jets. A binned likelihood fit yields a top-quark mass of mtm_{t} = 175.1 ±\pm 1.4 (stat.) ±\pm 1.2 (syst.) GeV.publishedVersio

    Electron reconstruction and identification efficiency measurements with the ATLAS detector using the 2011 LHC proton–proton collision data

    Get PDF
    Many of the interesting physics processes to be measured at the LHC have a signature involving one or more isolated electrons. The electron reconstruction and identification efficiencies of the ATLAS detector at the LHC have been evaluated using proton–proton collision data collected in 2011 at s√=7 TeV and corresponding to an integrated luminosity of 4.7 fb −1. Tag-and-probe methods using events with leptonic decays of W and Z bosons and J/ψ mesons are employed to benchmark these performance parameters. The combination of all measurements results in identification efficiencies determined with an accuracy at the few per mil level for electron transverse energy greater than 30 GeV

    死体肺移植におけるrecombinant tissue-field name="type" plasminogen activator(rt-PA)の効果について

    Get PDF
    [[sponsorship]]物理研究所[[note]]已出版;[SCI];有審查制度;具代表性[[note]]http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Drexel&SrcApp=hagerty_opac&KeyRecord=1434-6044&DestApp=JCR&RQ=IF_CAT_BOXPLO

    Measurement of the tt¯ production cross-section using eμ events with b-tagged jets in pp collisions at √s=7 and 8 TeV with the ATLAS detector

    Get PDF
    The inclusive top quark pair (tt¯tt¯) production cross-section σtt¯σtt¯ has been measured in proton–proton collisions at s√=7 TeVs=7 TeV and s√=8 TeVs=8 TeV with the ATLAS experiment at the LHC, using tt¯tt¯ events with an opposite-charge eμeμ pair in the final state. The measurement was performed with the 2011 7 TeV dataset corresponding to an integrated luminosity of 4.6 fb−1fb−1 and the 2012 8 TeV dataset of 20.3 fb−1fb−1. The numbers of events with exactly one and exactly two bb-tagged jets were counted and used to simultaneously determine σtt¯σtt¯ and the efficiency to reconstruct and bb-tag a jet from a top quark decay, thereby minimising the associated systematic uncertainties. The cross-section was measured to be: σtt¯σtt¯=182.9±3.1±4.2±3.6±3.3 pb (s√=7 TeV)and=242.4±1.7±5.5±7.5±4.2 pb (s√=8 TeV), σtt¯=182.9±3.1±4.2±3.6±3.3 pb (s=7 TeV)andσtt¯=242.4±1.7±5.5±7.5±4.2 pb (s=8 TeV), where the four uncertainties arise from data statistics, experimental and theoretical systematic effects, knowledge of the integrated luminosity and of the LHC beam energy. The results are consistent with recent theoretical QCD calculations at next-to-next-to-leading order. Fiducial measurements corresponding to the experimental acceptance of the leptons are also reported, together with the ratio of cross-sections measured at the two centre-of-mass energies. The inclusive cross-section results were used to determine the top quark pole mass via the dependence of the theoretically predicted cross-section on mpoletmtpole giving a result of mpoletmtpole=172.9+2.5−2.6=172.9−2.6+2.5 GeV. By looking for an excess of tt¯tt¯ production with respect to the QCD prediction, the results were also used to place limits on the pair-production of supersymmetric top squarks t~1t~1 with masses close to the top quark mass, decaying via t~1→tχ~01t~1→tχ~10 to predominantly right-handed top quarks and a light neutralino χ~01χ~10, the lightest supersymmetric particle. Top squarks with masses between the top quark mass and 177 GeV are excluded at the 95 % confidence level

    Measurements of spin correlation in top-antitop quark events from proton-proton collisions at √s=7 TeV using the ATLAS detector

    Get PDF
    Measurements of spin correlation in top quark pair production are presented using data collected with the ATLAS detector at the LHC with proton-proton collisions at a center-of-mass energy of 7 TeV, corresponding to an integrated luminosity of 4.6 fb1^{-1}. Events are selected in final states with two charged leptons and at least two jets and in final states with one charged lepton and at least four jets. Four different observables sensitive to different properties of the top quark pair production mechanism are used to extract the correlation between the top and antitop quark spins. Some of these observables are measured for the first time. The measurements are in good agreement with the Standard Model prediction at next-to-leading-order accuracy

    The <em>Drosophila</em> gonads: models for stem cell proliferation, self-renewal, and differentiation

    No full text

    Measurement of the muon reconstruction performance of the ATLAS detector using 2011 and 2012 LHC proton-proton collision data

    Get PDF
    This paper presents the performance of the ATLAS muon reconstruction during the LHC run with pp collisions at root s = 7-8 TeV in 2011-2012, focusing mainly on data collected in 2012. Measurements of the reconstruction efficiency and of the momentum scale and resolution, based on large reference samples of J/psi -&gt; mu mu, Z -&gt; mu mu and gamma -&gt; mu mu decays, are presented and compared to Monte Carlo simulations. Corrections to the simulation, to be used in physics analysis, are provided. Over most of the covered phase space (muon |eta| &lt; 2.7 and 5 less than or similar to p(T) less than or similar to 100 GeV) the efficiency is above 99% and is measured with per-mille precision. The momentum resolution ranges from 1.7% at central rapidity and for transverse momentum p(T) similar or equal to 10 GeV, to 4% at large rapidity and p(T) similar or equal to 100 GeV. The momentum scale is known with an uncertainty of 0.05% to 0.2% depending on rapidity. A method for the recovery of final state radiation from the muons is also presented.ATLAS Collaboration, for complete list of authors see dx.doi.org/10.1140/epjc/s10052-014-3130-x</p

    Measurement of flow harmonics with multi-particle cumulants in Pb plus Pb collisions at root(NN)-N-S=2.76 TeV with the ATLAS detector

    Get PDF
    ATLAS measurements of the azimuthal anisotropy in lead-lead collisions at root(NN)-N-S = 2.76 TeV are shown using a dataset of approximately 7 mu b(-1) collected at the LHC in 2010. The measurements are performed for charged particles with transverse momenta 0.5 < p(T) < 20 GeV and in the pseudorapidity range vertical bar eta vertical bar < 2.5. The anisotropy is characterized by the Fourier coefficients, vn, of the charged-particle azimuthal angle distribution for n = 2-4. The Fourier coefficients are evaluated using multi-particle cumulants calculated with the generating function method. Results on the transverse momentum, pseudorapidity and centrality dependence of the v(n) coefficients are presented. The elliptic flow, v(2), is obtained from the two-, four-, six-and eight-particle cumulants while higher-order coefficients, v(3) and v(4), are determined with two-and four-particle cumulants. Flow harmonics v(n) measured with four-particle cumulants are significantly reduced compared to the measurement involving two-particle cumulants. A comparison to v(n) measurements obtained using different analysis methods and previously reported by the LHC experiments is also shown. Results of measurements of flow fluctuations evaluated with multiparticle cumulants are shown as a function of transverse momentum and the collision centrality. Models of the initial spatial geometry and its fluctuations fail to describe the flow fluctuations measurements

    Search for Higgs Boson Pair Production in the gamma gamma b(b)over-bar Final State Using pp Collision Data at root s=8 TeV from the ATLAS Detector

    Get PDF
    Searches are performed for resonant and non-resonant Higgs boson pair production in the γγbbˉ\gamma\gamma b\bar{b} final state using 20 fb1^{-1} of proton-proton collisions at a center-of-mass energy of 8 TeV recorded with the ATLAS detector at the CERN Large Hadron Collider. A 95% confidence level upper limit on the cross section times branching ratio of non-resonant production is set at 2.2 pb, while the expected limit is 1.0 pb. The difference derives from a modest excess of events, corresponding to 2.4 standard deviations from the background-only hypothesis. The limit observed in the search for a narrow XhhX \to hh resonance ranges between 0.7 and 3.5 pb as a function of the resonance mass.Comment: 6 pages plus author list + cover page (19 pages total), 3 figures, published version, all figures including auxiliary figures are available at http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2013-29
    corecore